

Departemen Teknik Komputer 2025

Daftar Isi

Daftar	lsi	2
BAB I -	- Penjelasan	3
1.	Latar Belakang	3
2.	Pengertian	3
3.	Ruang Lingkup	3
BAB II	- Tata Cara Pelaksanaan	4
1.	Alur Pelaksanaan	4
2.	Jadwal Pelaksanaan	5
3.	Syarat	5
4.	Topik Proyek Desain Capstone	6
5.	Luaran Proyek Desain Capstone	6
6.	Kelas Proyek Desain Capstone 1	6
7.	Kelas Proyek Desain Capstone 2	8
BAB II	I - Pedoman Penulisan	10
1.	C100	10
2.	C200	34
3.	C300	55
4.	C400	70
5.	C500	87
I ampii	ran Dokumen	102

BAB I – Penjelasan

1. Latar Belakang

Proyek Desain Capstone merupakan mata kuliah wajib yang ada di Kurikulum Departemen Teknik Komputer yang terdiri dari dua bagian, yaitu Proyek Desain Capstone 1 yang ditawarkan pada Semester 6 dan Proyek Desain Capstone 2 pada Semester 7. Berdasarkan komptensi yang ada pada IABEE dan Atribut Lulusan dan Kompetensi Profesional yang ada, mahasiswa diharapkan memiliki kompetensi untuk menyelesaikan suatu permasalahan kompleks dalam bidang Teknik. Kompetensi yang diharapkan ini yang digunakan sebagai landasan untuk seluruh mahasiswa Departemen Teknik Komputer untuk wajib mengikuti dan menyelesaikan mata kuliah Proyek Desain Capstone.

2. Pengertian

...

Proyek Desain Capstone didesain sebagai suatu wadah mahasiswa dalam memenuhi kompetensi penyelesaian permasalahan kompleks yang ada di dalam bidang keteknikan. Kriteria kompleks yang ada diacu dari Atribut Lulusan dan Kompetensi Profesional, yang terdiri dari:

KR 1	Tidak dapat diselesaikan tanpa pengetahuan teknik yang mendalam pada
	tingkat satu atau lebih P1 (dasar teknik), P2 (pengetahuan spesialis), P3
	(desain dan operasi teknik), P4 (praktik teknik), P5 (literatur penelitian) yang
	memungkinkan pendekatan analitis prinsip pertama berbasis fundamental.
KR 2	Melibatkan isu-isu teknis dan non-teknis yang luas dan/atau bertentangan
	(seperti etika, keberlanjutan, hukum, politik, ekonomi, sosial) dan
	pertimbangan persyaratan masa depan.
KR 3	Melibatkan kolaborasi lintas disiplin teknik, bidang lain, dan/atau beragam
	kelompok pemangku kepentingan dengan kebutuhan yang sangat bervariasi.
KR 4	Mengatasi masalah tingkat tinggi dengan banyak komponen atau sub-
	masalah yang mungkin memerlukan pendekatan sistem.
Note:	

Note:

KR = Kriteria = Parameter

Kriteria kompleks yang ada diacu dari Atribut Lulusan dan Kompetensi Profesional yang sudah disebutkan digunakan sebagai acuan parameter kualifikasi mahasiswa Departemen Teknik Komputer dalam menyelesaikan Proyek Desain Capstone.

3. Ruang Lingkup

Ruang lingkup dari Proyek Desain Capstone adalah batasan pengerjaan mahasiswa dalam menyelesaikan suatu permasalah kompleks yang dimiliki oleh stakeholder di dalam mata kuliah Proyek Desain Capstone 1 dan Proyek Desain Capstone 2. Permasalahan yang dihadapi oleh stakeholder yang dapat dipilih oleh mahasiswa harus memenuhi Kriteria 1-4 yang telah disebutkan. Kelompok Proyek Desain Capstone yang terbentuk harus terdiri dari minimal 3 mahasiswa yang memiliki minimal 2 kepeminatan yang berbeda.

BAB II - Tata Cara Pelaksanaan

1. Alur Pelaksanaan

Sesuai dengan alur yang dapat dilihat pada website Capstone Departemen Teknik Komputer (<u>Tata Cara dan Unduh Formulir Proyek Desain Capstone – Capstone TA Teknik Komputer</u>), alur dari pelaksanaan Proyek Desain Capstone terdiri dari beberapa tahapan, yaitu:

Pendaftaran Judul Proyek Desain Capstone dan Pencarian atau Pembagian Dosen Pembimbing

Dalam tahapan ini mahasiswa membentuk kelompok untuk menentukan judul Proyek Desain Capstone yang akan dikerjakan dan memilih Dosen Pembimbing. Jika mahasiswa tidak memiliki judul sesuai dengan batas waktu yang diberikan, mahasiswa tetap melakukan pendaftaran dan Koordinator Proyek Desain Capstone akan mengelompokkan dan mengalokasikan judul serta Dosen Pembimbing untuk mahasiswa yang sudah mendaftar. Selain itu, mahasiswa juga bisa melakukan pembentukan tim dan pemilihan judul Proyek Desain Capstone melalui mekanisme:

- Projek yang diberikan oleh Prodi
- Tawaran Capstone Universitas/Fakultas/Departemen lain

Bagi mahasiswa yang memilih dari 2 alur yang ada pada opsi lain, maka bisa mengikuti alur pengerjaan Proyek Desain Capstone sesuai dengan projeknya masing-masing dan nanti akan dikonversi menyesuaikan dengan mekanisme Proyek Desain Capstone 1 dan Proyek Desain Capstone 2 yang ada di Departemen Teknik Komputer.

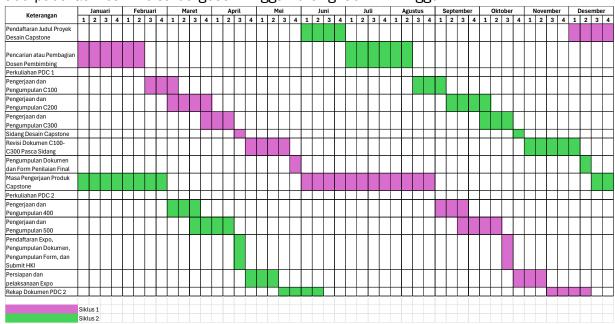
Dalam proses ini, mahasiswa bisa mengisikan data pada Google Form yang diberikan oleh Koordinator Proyek Desain Capstone pada Website Proyek Desain Capstone (https://capstone-ta.ce.undip.ac.id) atau Discord Departemen Teknik Komputer (https://discord.gg/rQNjs4R). Mahasiswa juga harus melengkapi Form Pendaftaran Proyek Desain Capstone dan menyerahkan Form tersebut kepada Koordinator Proyek Desain Capstone.

Pemilihan Dosen Pembimbing pada form pendaftaran hanya dilakukan untuk Dosen Pembimbing I. sedangkan untuk Dosen Pembimbing II akan di-balancing oleh tim Capstone. Dosen Pembimbing Capstone tidak harus berasal dari home-based Departemen Teknik Komputer, namun salah ada satu Dosen Pembimbing yang berasal dari Departemen Teknik Komputer.

Perkuliahan Proyek Desain Capstone 1

Setelah mahasiswa melakukan pendaftaran dan mendapatkan Dosen Pembimbing, mahasiswa harus mengambil mata kuliah Proyek Desain Capstone 1 dan mengikuti perkuliahan secara aktif di dalam kelas. Selama proses perkuliahan Proyek Desain Capstone 1, mahasiswa harus mengumpulkan Dokumen C100 hingga C300, Form Nilai Dosen Pembimbing Capstone 1, Form nilai ujian dari Dosen Penguji 1 dan 2, Form berita acara dan mengikuti rangkaian sidang Proyek Desain Capstone untuk menguji proses pengerjaan C100-C300 yang sudah dilakukan.

Masa Pengerjaan Produk Capstone


Setelah mahasiswa menyelesaikan perkuliahan Proyek Desain Capstone 1, mahasiswa bisa mulai melakukan implementasi terhadap desain rancangan yang telah disusun selama perkuliahan Proyek Desain Capstone 1.

Perkuliahan Proyek Desain Capstone 2

Setelah mahasiswa menyelesaikan mata kuliah Proyek Desain Capstone 1, mahasiswa harus mengambil mata kuliah Proyek Desain Capstone 2. Untuk perkuliahan Proyek Desain Capstone II, mahasiswa tidak perlu duduk di dalam kelas. Selama proses perkuliahan Proyek Desain Capstone 2, mahasiswa harus mengumpulkan Dokumen C100 hingga C500, Form Nilai Dosen Pembimbing Proyek Desain Capstone 2 dari Dosen Pembimbing 1 dan 2, Form Kesesuaian Milestone Proyek Desain Capstone 2 dari Dosen Pembimbing 1 dan 2, Form Penilaian Expo Proyek Desain Capstone 2 (minimal 5 penilai), dan Form Peer Review Proyek Desain Capstone 2.

2. Jadwal Pelaksanaan

Proyek Desain Capstone dibagi menjadi 2 mata kuliah, yaitu mata kuliah Proyek Desain Capstone 1 yang ada pada semester 6 dan mata kuliah Proyek Desain Capstone 2 yang ada pada semester 7. Pengerjaan Proyek Desain Capstone yang ada pada Departemen Teknik Komputer berlangsung selama 1 tahun dan disediakan dalam 2 siklus. Jadwal pelaksanaan pengerjaan Proyek Desain Capstone dapat dilihat pada Gambar 1. Jadwal pelaksanaan yang ada pada Gambar 1 bisa bergeser hingga kurang-lebih 4 minggu.

Gambar 1 Timeline Proyek Desain Capstone

3. Syarat

Mata kuliah Proyek Desain Capstone 1 bisa diambil oleh mahasiswa yang sudah menempuh 100 sks mata kuliah yang ada pada Kurikulum Departemen Teknik Komputer. Mata kuliah Proyek Desain Capstone 2 bisa diambil oleh mahasiswa yang sudah menyelesaikan Mata kuliah Proyek Desain Capstone 1 dan dinyatakan lulus pada mata kuliah Proyek Desain Capstone 1.

4. Topik Proyek Desain Capstone

Topik Proyek Desain Capstone yang ada pada Departemen Teknik Komputer mengacu pada Rencana Induk Penelitian (RIP) dan Pengabdian Kepada Masyarakat yang ada pada Buku Pedoman Penelitian dan Pengabdian Departemen Teknik Komputer.

Departemen Teknik Komputer memiliki empat buah konsentrasi keilmuan yang meliputi: 1) Sistem Tertanam; 2) Jaringan Komputer dan Keamanan; 3) Rekayasa Perangkat Lunak; 4) dan Multimedia.

Oleh sebab itu, dengan mengacu pada RIP, maka tema Proyek Desain Capstone di lingkungan Departemen Teknik Komputer dalam periode 2020 – 2029 adalah:

"Peningkatan kualitas kehidupan smart society melalui pemanfaatan smart technologies".

Tema ini selanjutnya dibagi menjadi beberapa topik sebagai berikut:

- 1) Early warning system
- 2) Building/area monitoring or controlling system
- 3) Smart business/organization platform/support system
- 4) Smart city and transportation

5. Luaran Proyek Desain Capstone

Dalam pelaksanaan Proyek Desain Capstone, mahasiswa harus menghasilkan beberapa keluaran, yaitu:

- Dokumen C100-C500
- Produk hasil penyelesaian permasalahan stakeholder
- Sertifikat HKI

6. Kelas Proyek Desain Capstone 1

Mata kuliah Proyek Desain Capstone 1 terdiri dari 5 CPMK, yaitu:

- CPMK 1 Mahasiswa mampu menerapkan pengetahuan matematis atau ilmu alam dalam perancangan dan pengembangan solusi proyek berbasis Teknik Komputer ketika menganalisis dan menyelesaikan masalah kompleks di dunia nyata.
- CPMK 2 Mahasiswa mampu merancang dan mengembangkan komponen, sistem, atau proses berbasis Teknik Komputer untuk memenuhi kebutuhan spesifik dengan mempertimbangkan batasan ekonomi, sosial, lingkungan, Kesehatan, dan keberlanjutan menggunakan perangkat teknis yang relevan, misalnya pemrograman mikrokontroler, desain prototipe loT, analisis data menggunakan platform/framework modern, atau perancangan UI/UX yang sesuai dengan prinsip desain antarmuka pengguna.
- CPMK 3 Mahasiswa mampu melakukan riset untuk mengumpulkan, menganalisis, dan menginterpretasi data guna mendukung penilaian teknis dan ilmiah dalam desain proyek.
- CPMK 4 Mahasiswa mampu mengidentifikasi, merumuskan, menganalisis, dan menyelesaikan permasalahan kompleks di bidang Teknik Komputer.
- CPMK 5 Mahasiswa mampu memahami dan mengikuti perkembangan teknologi terbaru di bidang Teknik Komputer serta menunjukkan tanggung jawab untuk pembelajaran sepanjang hayat yang berinisiatif sebagai agen perubahan di masyarakat.

Perkuliahan Proyek Desain Capstone 1 mengikuti ketentuan perkuliahan yang ada di Departemen Teknik Komputer terdiri dari 14 pertemuan dengan pertemuan tiap minggunya dapat dilihat pada Tabel 1.

Tabel 1 Rencana Perkuliahan Proyek Desain Capstone 1

Penjelasan Tentang Proyek Capstone Kesesuaian Latar Belakang Masalah, Rumusan Masalah, dan Tujuan Proyek Capstone Analisis Aspek Ekonomis Analisis Aspek Sustainibilitas Analisis Aspek Manufakturabilitas Solusi Perbandingan Teknik Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Besain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Perlode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 No UAS, Perlode Pengumpulan dokumen C100-C300, dan form-form penilalan	Pertemuan	Materi	
Capstone Analisis Aspek Ekonomis Analisis Aspek Sustainibilitas Analisis Aspek Manufakturabilitas Solusi Perbandingan Teknik Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Penjelasan Tentang Proyek Capstone	
Analisis Aspek Ekonomis Analisis Aspek Sustainibilitas Analisis Aspek Manufakturabilitas Solusi Perbandingan Teknik Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	1	Kesesuaian Latar Belakang Masalah, Rumusan Masalah, dan Tujuan Proyek	
Analisis Aspek Sustainibilitas Analisis Aspek Manufakturabilitas Solusi Perbandingan Teknik Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Capstone	
Analisis Aspek Manufakturabilitas Solusi Perbandingan Teknik Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Analisis Aspek Ekonomis	
Analisis Aspek Manufakturabilitas Solusi Perbandingan Teknik Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk 4 Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem 8 Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dinasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	2	Analisis Aspek Sustainibilitas	
Gambaran Sistem Saat ini Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	2	Analisis Aspek Manufakturabilitas	
Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Solusi Perbandingan Teknik	
Target Sistem yang Dikembangkan Menentukan Fungsi Utama Produk Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	3	Gambaran Sistem Saat ini	
4 Menggambarkan Karakteristik Pengguna Sistem Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface 5 Functional Description Data Requirement Functional and Non-Functional 6 Desain dan Verifikasi Produk Testing Plan 7 Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem 8 Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk 9 Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	3	Target Sistem yang Dikembangkan	
Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional External Interface Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Menentukan Fungsi Utama Produk	
External Interface Functional Description Data Requirement Functional and Non-Functional Besain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	4	Menggambarkan Karakteristik Pengguna Sistem	
Functional Description Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Perbedaan Lingkungan Pengembangan dan Lingkungan Operasional	
Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		External Interface	
Data Requirement Functional and Non-Functional Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	5	Functional Description	
Desain dan Verifikasi Produk Testing Plan Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	5	Data Requirement	
7 Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem 8 Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk 9 Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Functional and Non-Functional	
Penjelasan contoh pembuatan arsitektur sistem dan detilnya Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	6	Desain dan Verifikasi Produk	
Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	0	Testing Plan	
Tidak Ada UTS, Periode Pengumpulan C100-C300 Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	7	Penjelasan contoh pembuatan arsitektur sistem dan detilnya	
Implementasi Produk Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	,	Jenis - Jenis diagram yang dapat digunakan dalam pengembangan sistem	
9 Tampilan Produk Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	8	Tidak Ada UTS, Periode Pengumpulan C100-C300	
Demonstrasi Produk Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Implementasi Produk	
Teknik-teknik Pengujian Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	9	Tampilan Produk	
Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Demonstrasi Produk	
dihasilkan Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Teknik-teknik Pengujian	
Penjelasan Pengajuan HKI Penjelasan Pendaftaran Makalah pada Jurnal 11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Penjelasan penelitian yang bisa dilakukan dari Produk Capstone yang	
Penjelasan Pendaftaran Makalah pada Jurnal Periode Sidang PDC Periode Sidang PDC Revisi C100-C300 Revisi C100-C300 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	10	dihasilkan	
11 Periode Sidang PDC 12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Penjelasan Pengajuan HKI	
12 Periode Sidang PDC 13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form		Penjelasan Pendaftaran Makalah pada Jurnal	
13 Revisi C100-C300 14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	11	Periode Sidang PDC	
14 Revisi C100-C300 15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	12	Periode Sidang PDC	
15 Revisi C100-C300 No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	13	Revisi C100-C300	
No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	14	Revisi C100-C300	
16 1	15	Revisi C100-C300	
penilaian	16	No UAS, Periode Pengumpulan dokumen C100-C300, dan form-form	
		penilaian	

Rubrik penilaian yang digunakan pada mata kuliah Proyek Desain Capstone 1 dapat dilihat pada Tabel 2 berikut.

Tabel 2 Rubrik Penilaian Proyek Desain Capstone 1

СРМК	Form Penilaian	Form Penilaian	Form Penilaian	Form Penilaian
CPMR	Dosbing 1	Dosbing 2	Penguji 1	Penguji 2 🔻
CPMK 1	15	15	15	15
CPMK 2	25	25	25	25
CPMK3	25	25	25	25
CPMK 4	15	15	15	15
CPMK 5	20	20	20	20

Bobot untuk total nilai pada keempat Form yang digunakan adalah sama, yaitu masing-masing komponen sebesar 25% pada SIAP.

7. Kelas Proyek Desain Capstone 2

Mata kuliah Proyek Desain Capstone 2 terdiri dari 6 CPMK, yaitu:

- CPMK 1 Mahasiswa mampu melakukan riset untuk mengumpulkan, menganalisis, dan menginterpretasi data guna mendukung penilaian teknis dan ilmiah dalam desain proyek.
- CPMK 2 Mahasiswa mampu mengidentifikasi, merumuskan, menganalisis, dan menyelesaikan permasalahan kompleks di bidang Teknik Komputer.
- CPMK 3 Mahasiswa memiliki keterampilan dalam menerapkan metode dan desain perancangan sistem.
- CPMK 4 Mahasiswa mampu menyusun laporan dan mempresentasikan hasil proyek secara ilmiah dan profesional di hadapan masyarakat akademik maupun publik.
- CPMK 5 Mahasiswa mampu melakukan perencanaan dan pengelolaan proyek desain capstone berbasis Teknik Komputer secara komprehensif dengan memperhatikan keterbatasan sumber daya, waktu, dan kebutuhan pengguna yang teridentifikasi.
- CPMK 6 Mahasiswa mampu bekerja sama secara efektif dalam tim lintas peminatan untuk mengembangkan solusi kreatif berbasis teknologi, serta berperan sebagai anggota maupun pemimpin tim dengan menerapkan etika profesi yang baik.

Pada mata kuliah Proyek Desai Capstone 2, mahasiswa tidak duduk di dalam kelas. Rubrik penilaian yang digunakan pada mata kuliah Proyek Desain Capstone 2 dapat dilihat pada Tabel 2 berikut.

Tabel 2 Rubrik Penilaian Proyek Desain Capstone 2

СРМК	Form Penilaian Dosbing 1	Form Penilaian Dosbing 2	Form Kesesuaian Milestone Dosbing 1	Form Kesesuaian Milestone Dosbing 2	Form Penilaian Expo	Form Peer Review
CPMK 1	30	30				
CPMK 2	30	30				
CPMK 3	40	40				
CPMK 4					100	
CPMK 5			100	100		
CPMK 6						100

Bobot untuk total nilai pada Form Penilaian Dosen Pembimbing 1 dan 2 serta Form Kesesuaian Milestone dari Dosen Pembimbing 1 dan 2 adalah 15% pada SIAP. Form Penilaian Expo memiliki bobot 20% pada SIAP. Form Peer Review memiliki bobot 20% pada SIAP.

BAB III - Pedoman Penulisan

Template dan Dokumen C100

Topik Capstone	Topik Capstone	
Siklus / Tahun	*Gasal atau Genap / (tahun)	
Judul Dokumen	Capstone TA	
	Judul Capstone Proyek kelomp	ok
Jenis Dokumen	PROPOSAL	
	Catatan: Penggunaan dan penyebaran dokumen ini dikendalikan oleh	
	Departemen Teknik Komputer Universitas Diponegoro	
Nomor Dokumen	C100.[NoRev]TA[tahun].[1/2].[KodeKelompok]	
Nomor Revisi	NoRev	
Nama File	Kode Kelompok.pdf	
Tanggal Penerbitan	Tanggal Penerbitan	
Unit Penerbit	Departemen Teknik Komputer Universitas Diponegoro	
Jumlah Halaman	Jumlah Halaman Tidak termasuk sampul	

		Data Pengusul		
Pengusul	Nama		Jabatan	Anggota
	NIM			
	Tanggal	Ta	ında Tangan	
	Nama		Jabatan	Anggota
	NIM			
	Tanggal	Ta	ında Tangan	
	Nama		Jabatan	Anggota
	NIM			
	Tanggal	Ta	ında Tangan	
Pembimbing 1	Nama	Ta	ında Tangan	
(Utama)				
	NIP.			
	Tanggal			
Pembimbing 2	Nama	Ta	ında Tangan	
	NIP.			

No. Dokumen: C100-02-	No. Revisi: 02	Tanggal: 10 Februari 2021	Halaman 11 dari
TA1920.1.16037			110

^{© 2019} oleh Departemen Teknik Komputer Undip. Pengungkapan dan penggunaan seluruh isi dokumen hanya dapat dilakukan atas ijin tertulis Departemen Teknik Komputer Undip, Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275 Indonesia.

Tanggal	

 No. Dokumen: C100-02 No. Revisi: 02
 Tanggal: 10 Februari 2021
 Halaman 12 dari

 TA1920.1.16037
 110

Versi, Tanggal, Oleh	Perbaikan

 No. Dokumen: C100-02 No. Revisi: 02
 Tanggal: 10 Februari 2021
 Halaman 13 dari

 TA1920.1.16037
 110

Daftar Isi

<u>1. Pe</u>	ndahuluan	15
1.1.	Ringkasan isi dokumen	15
1.2.	Aplikasi Dokumen	15
1.3.	Referensi	15
<u>1.4.</u>	Daftar Singkatan	15
2. Pro	oposal Pengembangan Produk	16
2.1.	Latar belakang masalah	16
2.2.	Rumusan masalah	17
2.3.	<u>Tujuan</u>	17
2.4.	Pemilihan Solusi dan Teknik	18
2.5.	Skenario pemanfaatan produk oleh stakeholder	26
3. <u>Us</u>	aha pengembangan	27
3.1.	<u>Man-month</u>	27
<u>3.2.</u>	Machine-month	28
3.3.	<u>Development tools</u>	30
<u>3.4.</u>	<u>Test equipment</u>	32
<u>3.5.</u>	Kebutuhan expert	32
<u>4. Ke</u>	simpulan	32

1. Pendahuluan

1.1. Ringkasan isi dokumen

Dokumen ini memaparkan informasi mengenai alasan pembuatan, analisis sistem kebutuhan dan usulan proses pengembangan dari sistem. Dokumen ini juga membahas seluruh aspek dari pembuatan sistem, mulai dari sudut pandang pihak pengguna hingga dari sudut pandang pihak penulis. Dokumen ini sendiri dapat membantu menjelaskan sistem yang dibuat kepada pengguna. Dengan demikian, pembaca diharapkan dapat mengerti proses pengembangan dari solusi yang ditawarkan. Kemudian, dokumen ini dapat digunakan sebagai dasar proses pengembangan dan evaluasi selama tahap pengembangan proyek berlangsung. Selain itu, dokumen ini juga dapat digunakan sebagai acuan teknis untuk

1.2. Aplikasi Dokumen

Dokumen ini berlaku untuk digunakan dalam pengembangan produk proyek capstone:

- (1) Sebagai gambaran umum dari segi teknis maupun non-teknis tugas akhir yang akan dikerjakan.
- (2) Memastikan kelayakan tugas akhir, baik dari segi teknik, waktu, biaya/ekonomis, maupun strategis.
- (3) Menjadi catatan proses pengerjaan dan revisi yang dilakukan.

Proposal ini diajukan kepada dosen pembimbing tugas akhir dan tim capstone tugas akhir Program Studi Sarjana Teknik Komputer Undip sebagai bahan penilaian tugas akhir.

1.3. Referensi

- [1] P. Citra, "Kombinasi Sobel, Canny Dan Otsu Untuk Segmentasi Citra," Technologia, vol. 13, no. 2, hal. 102–107, 2022.
- [2] S. C. Re, K. Daya, D. Tanggung, dan J. Perusahaan, "Keselamatan dan Kesehatan Kerja," 2013, Diakses: Feb 10, 2023 Tersedia pada: www.ifrro.org.
- [3] "Raspberry Pi 3 Model B+," Diakses: Feb 10, 2023. Tersedia pada: www.raspberrypi.org/products/raspberry.
- [4] IEA Constituent Agreements, 2021. Graduate Attributes and Professional Competences. Available at: https://www.ieagreements.org/assets/Uploads/IEA-Graduate-Attributes-and-Professional-Competencies-2021.1-Sept-2021.pdf [Accessed 13 January 2025].

1.4. Daftar Singkatan

Akronim	Pengertian	
DoS	Denial of Service	
DDoS	Distributed Denial of Service	
IDS	Intrusion Detection System	

IPS	Intrusion Prevention System
-----	-----------------------------

2. Proposal Pengembangan Produk

2.1. Latar belakang masalah

Masalah dilihat dari kacamata customer dan dapat menunjukkan di mana terjadinya masalah, merupakan complex engineering problem. Definisi complex engineering problem mengacu pada buku pedoman capstone project.

Contoh:

Keamanan jaringan menjadi semakin krusial mengingat perkembangan pesat teknologi informasi dan internet pada era digital saat ini. Keamanan jaringan menjadi fokus utama dalam menghadapi tantangan berbagai ancaman siber yang terus berkembang, termasuk serangan peretasan, virus, *malware*, dan pencurian data sensitif. Dengan semakin kompleksnya infrastruktur jaringan dan ketergantungan masyarakat terhadap teknologi, organisasi, perusahaan, serta lembaga pemerintahan perlu memastikan integritas, kerahasiaan, dan ketersediaan data yang berada dalam jaringan mereka.

Salah satu jenis serangan pada jaringan adalah DoS/DDoS. *Denial of Service* (DoS) atau *Distributed Denial* of *Service* (DDoS) merupakan serangan yang membanjiri server dengan mengirimkan permintaan yang sangat banyak sehingga menghabiskan sumber daya pada server tersebut sampai server tersebut tidak dapat menjalankan fungsi dan tugasnya dengan benar [1]. Serangan DoS/DDoS mempunyai beberapa bentuk berdasarkan *OSI layer* yang diserang seperti, serangan *slow* HTTP DoS, DRDoS (*Distributed Reflection Denial of Service*), dan *DNS amplification* DoS/DdoS.

Serangan slow HTTP DoS adalah salah satu metode serangan DoS yang menargetkan server HTTP. Metode ini menghambat layanan dengan menjenuhkan kumpulan koneksi dengan permintaan yang lambat dan banyak. Laporan bahwa serangan DoS "slow read" semacam serangan HTTP DoS dari hanya satu penyerang dapat dicegah secara efektif dengan membatasi jumlah koneksi untuk setiap alamat IP [2]. Sementara itu ada juga serangan DoS lainnya, yaitu DNS amplification. Serangan amplifikasi Domain Name Server (DNS) adalah bentuk populer dari Denial Distribution of Service (DDoS), di mana penyerang menggunakan server DNS terbuka yang dapat diakses publik untuk membanjiri sistem target dengan lalu lintas respons DNS [3]. DRDoS (Distributed Reflection Denial of Service) adalah sejenis serangan DoS (Denial of Service). Pada serangan ini pihak ketiga ditipu atau dibohongi untuk mengirimkan data dalam jumlah besar ke para korban. Artinya, penyerang menggunakan spoofing IP alamat sumber untuk menyembunyikan identitas mereka dan menyebabkan pihak ketiga mengirim data ke korban.

Pada kantor Ditreskrimsus Polda Jateng belum ada sistem yang dapat mengenali serangan DoS/DDoS yang terjadi pada server. Oleh karena itu dibutuhkan sistem yang dapat digunakan untuk melakukan monitoring dan memberikan peringatan ketika terjadi suatu serangan DoS/DDoS pada server tersebut. Sebagai bentuk upaya meningkatkan pengamanan pada server kantor Subdit V Ditreskrimsus Polda Jateng dari serangan Denial of Service/Distributed Denial of Service (DoS/DDoS), maka dapat diterapkan teknologi Intrusion Detection System/Intrusion Prevention System (IDS/IPS). Intrusion Detection System (IDS) adalah sebuah aplikasi perangkat lunak atau perangkat keras yang dapat mendeteksi aktivitas yang mencurigakan dalam sebuah sistem atau jaringan [5]. Dalam melakukan pendeteksian, IDS menggunakan beberapa metode, diantaranya yaitu, signatures dan anomaly detection. Teknik IDS saat ini masih banyak menggunakan metode tradisional, sehingga masih jauh dari sempurna dibandingkan dengan teknik dan alat yang digunakan penyerang, karena IDS dengan metode tradisional hanya menggunakan deteksi berbasis signature atau model deteksi berbasis anomali dan menyebabkan banyak kesalahan [6]. Oleh karena itu Model-Based Feature Selection diusulkan sebagai cara untuk menutup kesenjangan dan meningkatkan efektivitas IDS. Smart Intrusion Detection System (SIDS) ini akan diintegrasikan dengan log management system yang akan mempermudah admin dari stakeholder untuk memonitoring perangkat dari serangan DoS/DDoS.

2.2. Rumusan masalah

Berisi permasalah stakeholder yang dipilih untuk diselesaikan dengan produk yang diusulkan oleh Tim Capstone. Dapat dinyatakan dalam minimal dua kalimat pernyataan tanpa jargon.

Contoh:

Ditreskrimsus Polda Jateng belum memiliki sistem yang dapat mengenali serangan DoS/DDoS yang terjadi pada server sehingga dibutuhkan sistem yang dapat digunakan untuk memonitor dan memberikan peringatan ketika terjadi serangan DoS/DdoS.

Intrusion Detection System (IDS) dengan metode tradisional hanya menggunakan deteksi berbasis *signature* atau model deteksi berbasis anomali dan menyebabkan banyak kesalahan.

2.3. Tujuan

Tujuan umum menjelaskan visi besar atau hasil utama yang ingin dicapai dari proyek diikuti dengan tujuan khusus yang merinci langkah-langkah spesifik atau aspek teknis untuk mendukung pencapaian tujuan umum.

Contoh:

A. Tujuan Umum

"Mengembangkan *Smart Intrusion Detection System* (SIDS) untuk memonitor perangkat dari serangan DoS/DdoS dengan menambahkan *Model-Based Feature Selection* untuk meningkatkan efektivitas IDS tradisional.

B. Tujuan Khusus

Tujuan khusus ini memuat tujuan proyek capstone sesuai dengan pembagian pekerjaan pada masing-masing anggota tim Capstone.

Contoh:

- 1. "Membuat dan melakukan pelatihan *machine learning Model-Based Feature Selection* untuk mengidentifikasi serangan DoS/DDoS."
- 2. "Mengintegrasikan *Model-Based Feature Selection* untuk meningkatkan efektivitas IDS pada Smart Intrusion Detection System (SIDS)."
- 3. "Mengintegrasikan Smart Intrusion Detection System (SIDS) dengan *log management system* dan *distributed streaming system* yang akan mempermudah admin dari *stakeholder* untuk memonitor perangkat dari serangan DoS/DDoS."

2.4. Pemilihan Solusi dan Analisis

Gambarkan beberapa alternatif solusi yang bisa dipilih untuk menyelesaikan masalah yang ada (minimal 3), kemudian lakukan analisis berikut untuk memilih solusi yang ada. Alternatif solusi yang diberikan merupakan tiga contoh alternatif solusi secara umum yang dapat digunakan untuk menyelesaikan permasalahan yang ada. Jika kasus yang digunakan tidak bisa memberikan alternatif solusi secara umum, maka tim capstone bisa memberikan alternatif terhadap fitur yang ada di dalam sistem. Contoh pemilihan alternatif solusi bisa dipisahkan berdasarkan perangkat keras, perangkat lunak, atau hal lain sesuai dengan proyek yang dikembangkan. Analisis aspek terkait yang dilkakukan minimal sebanyak tiga aspek dengan aspek wajib yaitu: ekonomis, manufakturabilitas, dan sustainabilitas.

Contoh:

2.4.1. Alternatif Solusi

A. Alternatif Solusi untuk Deteksi DoS/DdoS

Berdasarkan usulan solusi yang ditunjukkan oleh tabel 1, *machine learning* dipilih untuk menjadi solusi dalam deteksi DoS/DDoS. Hal ini dikarenakan dalam proses deteksi menggunakan pendekatan berbasis *signature*, IDS tidak dapat mendeteksi serangan yang belum dikenal karena basis data *signature* yang telah kadaluwarsa atau karena *signature* memang belum tersedia. Pendekatan kedua adalah deteksi berbasis anomali dimana pada deteksi ini, perlu diciptakan suatu profil perilaku khusus dari fitur aktivitas jaringan dalam taraf tertentu. Profil ini kemudian dijadikan sebagai dasar untuk mendefinisikan aktivitas jaringan normal [10].

Tabel 1. Alternatif solusi untuk deteksi DoS/DdoS

Solusi	Deskripsi
--------	-----------

Signature Based	Signature Based Detection adalah salah satu metode IDS yaitu,				
Detection	dengan cara menyadap paket data kemudian membandingkannya				
	dengan database rute IDS yang berisi signature-signature paket				
	serangan. Berdasarkan pembandingan tersebut, jika paket data				
	mempunyai pola yang sama dengan setidaknya salah satu pola di				
	dalam database rule IDS, maka paket tersebut dapat dianggap sebagai				
	serangan, dan demikian juga sebaliknya. Apabila paket data tersebut				
	sama sekali tidak mempunyai pola yang sama dengan pola di				
	database rule IDS. maka paket data tersebut dianggap bukan serangan				
	[7].				
Anomaly Based	IDS jenis ini dapat mendeteksi adanya penyusupan dengan				
Detection	mengamati adanya kejanggalan pada sistem, atau adanya				
	penyimpangan-penyimpangan dari kondisi normal. Sebagai contoh,				
	apabila terdapat penggunaan memori yang melonjak secara terus				
	menerus atau terdapat koneksi paralel dari sebuah IP Address dalam				
	jumlah yang banyak dalam waktu yang bersamaan, maka kondisi				
	tersebut dapat dianggap sebagai sebuah kejanggalan, yang kemudian				
	oleh IDS dianggap sebagai serangan [7].				
Machine Learning	Machine learning adalah bidang ilmu komputer yang menggunakan				
	teknik statistika untuk memberi kemampuan sistem komputer agar				
	dapat belajar dari data tanpa diprogram secara eksplisit [8]. Untuk				
	IDS, machine learning dapat digunakan untuk mendeteksi serangan				
	yang diketahui atau serangan yang tidak diketahui jika model telah				
	cukup terlatih [9].				

B. Alternatif solusi untuk Intrusion Detection System/Intrusion Prevention System (IDS/IPS)

Berdasarkan pada tiga usulan solusi yang ditunjukkan di tabel 2, Snort dipilih untuk menjadi solusi dan teknik untuk *Intrusion Detection System/Intrusion Prevention System* (IDS/IPS). Hal ini dikarenakan Snort lebih mudah untuk diimplementasikan dan memiliki *ruleset* yang dapat dikustomisasi sesuai kebutuhan [13].

Tabel 2. Alternatif solusi untuk Intrusion Detection System/Intrusion Prevention System (IDS/IPS)

Solusi	Deskripsi		
Suricata	Suricata adalah IDS, IPS dan monitoring engine untuk jaringan yang		
	berkinerja tinggi. Suricata adalah open source dan dimiliki oleh		
	masyarakat yang dikelola yayasan non-profit, Open Information		
	Security Foundation (OISF). Suricata dikembangkan oleh OISF dan		
	vendor pendukungnya [11].		

Snort	Snort merupakan salah satu contoh program Network-based Intrusion		
	Detection System, yaitu sebuah program yang dapat mendeteksi		
	suatu usaha penyusupan pada suatu sistem jaringan komputer. Snort		
	bersifat open source dengan lisensi GNU General Purpose License		
	sehingga software ini dapat dipergunakan untuk mengamankan		
	sistem server tanpa harus membayar biaya lisensi [7].		
Security Onion	Security Onion merupakan salah satu distro dari sistem operasi		
	berbasis Linux. Security Onion umumnya digunakan sebagai tools		
	atau bundle packet untuk Network Security Monitoring (NSM).		
	Security Onion dapat difungsikan menjadi dua jenis sistem operasi,		
	pertama sebagai sistem operasi standalone dimana Security Onion		
	akan berfungsi sebagai penyaji data sedangkan jenis kedua sebagai		
	server untuk merekam, mengelola dan menyajikan data yang didapat		
	dari sistem sensornya [12].		

C. Alternatif solusi untuk Log Management System

Dari tiga pilihan solusi yang ditunjukkan dalam tabel 3, ELK Stack dipilih karena *platform Log Management System* lainnya mematok harga yang cukup tinggi untuk penyimpanannya. ELK Stack merupakan *Log Management System* berbasis open source dan gratis serta memiliki kemampuan untuk menjadi *Log Management System* yang baik.

Tabel 3. Alternatif solusi untuk Log Management System

Solusi	Deskripsi					
ELK Stack	ELK Stack terdiri dari 4 buah aplikasi yang berbeda yaitu					
	Elasticsearch, Logstash, Kibana, dan Beats. Masing-masing aplik					
	memiliki fungsi yang berbeda-beda untuk menunjang dalam					
	manajemen log [14]. Elasticsearch Logstash Kibana (ELK Stack)					
	merupakan komponen yang tepat dalam membangun log event					
	management yang dapat memberi insight kepada sistem					
	administrator mengenai tren, statistik, dan anomali yang terjadi [15].					
	Sebuah <i>platform</i> perangkat lunak yang digunakan untuk memantau,					
	mencari, menganalisis dan memvisualisasikan data yang dihasilkan					
	mesin.					
Splunk	Splunk melakukan penangkapan, pengindeksan, dan					
	menghubungkan data secara realtime ke dalam sebuah wadah yang					
	dapat dengan mudah dicari dan menghasilkan suatu grafik,					
	peringatan, dashboard serta visualisasi agar data dapat dengan					
	mudah dibaca dan dianalisis [16]. Menghadirkan pengumpulan dan					
	normalisasi log terpusat, deteksi ancaman dan respons otomatis,					

visualisasi	yang	intuitif,	dan	antarmuka	pengguna,	serta	korelasi
waktu nyat	a dan	pencaria	n <i>log</i>	untuk mend	lukung peng	yelidil	kan [17].

D. Alternatif solusi untuk algoritma klasifikasi

Dari usulan solusi untuk algoritma machine learning pada tabel 4, Algoritma Naive Bayes dan KNN dipilih. Pada penelitian ini digunakan dua dataset yaitu, CICDoS2017 dan CICDDoS2019. Algoritma Decision Tree memberikan akurasi 60,23% untuk UNSW-NB-15 dan 99,08% untuk dataset CICDDoS2019 [22]. Sementara itu, pada dataset CICDoS2017 Algoritma KNN memberikan akurasi 99,36% [23].

Tabel 4. Alternatif solusi untuk algoritma klasifikasi

Solusi	Deskripsi				
Decision Tree	Decision Tree adalah algoritma yang bisa menghasilkan keputusan				
	dengan cara membentuk pohon keputusan [18]. Metode pohon				
	keputusan mengubah fakta yang sangat besar menjadi pohon				
	keputusan yang merepresentasikan aturan. Pohon keputusan juga				
	berguna untuk mengekplorasi data, menemukan hubun				
	tersembunyi antara sejumlah calon variabel input dengan sebuah				
	variabel target [19].				
Naive Bayes	Algoritma Naive Bayes merupakan algoritma yang menggunakan				
	perhitungan probabilitas. Algoritma ini umumnya digunakan untuk				
	menyelesaikan permasalahan prediksi berupa klasifikasi. Algoritma				
	ini juga dikenal sebagai yang memiliki akurasi yang tinggi. Proses				
	klasifikasi pada algoritma ini terdapat fase yakni fase training dan				
	fase testing. Fase training atau bisa disebut sebagai fase lead				
	adalah sebagian data telah diketahui kelas datanya untuk model				
	perkiraan. Selanjutnya fase pengujian atau bisa disebut fase				
	klasifikasi model yang sudah terbentuk diuji dengan sebagian data				
	lainnya agar diketahui akurasi atas model yang sudah terbentuk [20].				
KNN	Algoritma KNN bersifat sederhana bekerja berdasarkan jarak				
	terpendek dari data uji ke data latih untuk menentukakan kelas dari				
	data tersebut Setelah mengumpulkan data-data pada kelompok k				
	tertentu, kemudian diambil kelas data mayoritas untuk dijadikan				
	sebagai kelas prediksi dari data uji. KNN memiliki beberapa				
	kelebihan yaitu tahan terhadap data yang memiliki noise dan efektif				
	terhadap data latih yang berjumlah besar dan memiliki performa				
	cukup baik. Namun waktu yang digunakan untuk komputasi				

sangatlah lama jika data latihnya besar dan sangat sensitif dengan ciri
yang redundan atau relevan [21].

2.4.2. Analisis Aspek Terkait

A. Analisis dari aspek ekonomis

Analisis aspek ekonomis menggunakan definisi sebagai berikut: (Hoffman, H.F. and Hoffman, H.F., 2014. Engineering and the capstone course (pp. 1-5). Springer International Publishing.)

Economic or financial: effect of this topic on the local economy, savings, possible cost of project development, material cost, labor issues, outsourcing needs, etc. Harus terdapat cost-benefit analysis yang mencakup hal-hal berikut.

Cost:

- Biaya operasional existing (sebelum adanya proposal solusi yang dikembangkan, jika ada).
- Biaya project development, yang juga mencakup setiap material cost.
- Biaya kebutuhan tenaga ahli dan operator (labor) dengan adanya solusi tersebut, sekaligus bagaimana efeknya terhadap ekonomi setempat, jika ada.

Benefit:

- Saving (berapa ekspektasi pengurangan biaya dengan adanya solusi).
- Aspek benefit yang intangible dengan adanya solusi yang ditawarkan. Contoh: solusi dapat memotong ekspektasi waktu pekerjaan tiga hari menjadi tiga jam.

Financial Metrics (pilih salah satu):

- Return of Investment (ROI)
- Payback period
- Net Present Value (NPV)
- Internal Rate of Return (IRR)

Contoh:

Cost:

Kategori	Item	Biaya (Rp)	Keterangan
Biaya	Tenaga Kerja	0	Tim Capstone
Pengembangan	Lisensi Software:	0	Menggunakan perangkat
Sistem	Suricata atau Snort,		open source
	ElkStack, Elasticsearch,		
	Logstast, dan Kibana),		
	Apache Kafka		
	Infrastruktur:	0	Menggunakan server
	Server internal Polda		yang sudah ada

	Dataset	0	Pemanfaatan dataset publik seperti CICDoS2017 dan CICDDoS2019.
Biaya Operasional Tahunan	Pemeliharaan server internal	0	Biaya listrik, pendinginan, dan perawatan server Polda Jateng sudah masuk ke anggaran tahunan Polda.
	Sertifikat SSL/TLS	0	Keamanan enkripsi komunikasi data, sudah masuk ke anggaran tahunan Polda

Benefit:

1. Tangible Benefit

Mengurangi biaya downtime akibat serangan DDoS:

- Asumsi kerugian akibat gangguan sistem Rp20.000.000/jam.
- Jika sistem mencegah downtime 5 jam/bulan:
 - o Penghematan: Rp20.000.000 x 5 x 12 bulan = **Rp1.200.000.000/tahun**.

Kategori	Item	Biaya (Rp)	Keterangan
Penghematan dan	Pencegahan downtime	1.200.000.000	Mengurangi kerugian
Efisiensi	(5 jam/bulan)		akibat gangguan sistem
			layanan daring.

2. Intangible Benefit

Aspek ekonomis tidak harus selalu diukur dari sesuatu yang *tangible*, tetapi bisa juga dari aspek *intangible*. Misal: kecepatan proses pencarian data, kemampuan *real-time tracking*,

B. Analisis dari aspek manufakturabilitas

Analisis dari aspek manufakturabilitas ini terkait dengan ketersediaan, skalabilitas dan maintanibilitas seperti: material availability, software availability, technology stack, use of commercial-off-the-shelf (COTS) versus custom components, special needs for hostile environments.

Contoh:

1. Material Availability:

No. Dokumen: C100-02-	No. Revisi: 02	Tanggal: 10 Februari 2021	Halaman 23 dari
TA1920 1 16037			110

Sensor	Sensor kualitas air (pH, suhu, oksigen terlarut, salinitas).
Ketersediaan	Tersedia secara luas di pasar dengan berbagai spesifikasi.

2. Penggunaan Commercial-Off-The-Shelf dan Custom Components

COTS Components	Sensor, microkontroler, modul komunikasi
Custom Components	jalur sensor, tempat sensor, dkk

3. Special Needs for Hostile Environments

a. Lingkungan basah dan korosif:

Masalah	Air tambak sering kali memiliki kadar garam yang tinggi, yang						
	dapat mempercepat korosi pada komponen logam.						
Solusi	Gunakan bahan tahan korosi seperti stainless steel untuk rangka dan						
	sensor dan melapisi PCB dengan bahan konformal untuk						
	melindungi dari kelembapan dan salinitas.						
	Gunakan casing pelindung IP68 yang tahan air dan debu digunakan						
	untuk perangkat elektronik utama.						

b. Paparan sinar matahari dan suhu ekstrem:

Masalah	Perubahan suhu yang drastis dapat memengaruhi performa baterai
	dan sensor.
Solusi	Gunakan baterai lithium-ion yang dirancang untuk suhu tinggi dan
	menambahkan pelindung UV pada casing untuk mengurangi
	degradasi material.

4. *Software availability:*

Jenis Perangkat Lunak	Nama Perangkat Lunak	Keterangan
Intrusion Detection	Suricata	Open source
System/Intrusion Prevention System (IDS/IPS)	Snort	Open source
Log Management System	Elk Stack (Elasticsearch, Logstast, dan Kibana)	Open source
Distributed Streaming System	Apache Kafka	Open source

Perangkat lunak yang digunakan yaitu Suricata atau Snort, Elk Stack (Elasticsearch, Logstast, dan Kibana) dan Apache Kafka merupakan perangkat lunak *open source* dan diperbaharui secara berkala. Forum penggunaan pun aktif, sehingga pencarian informasi mengenai perangkat lunak yang digunakan lebih mudah dilakukan. Selain itu aplikasi ini juga berjalan pada sistem operasi Linux, Linux sendiri merupakan sistem operasi yang bersifat *open source* yang cukup populer.

No. Dokumen: C100-02-	No. Revisi: 02	Tanggal: 10 Februari 2021	Halaman 24 dari
TA1920.1.16037			110

C. Analisis dari aspek sustainibilitas

Dalam membahasa aspek sustainibilitas, Tim Capstone perlu memaparkan dampak analisis produk yang dipilih dalam hal: meminimalisasi pengaruh negatif terhadap lingkungan, memastikan kelangsungan ekonomi jangka panjang, penggunaan energi, dll.

Contoh:

- 1. Efisiensi Energi: bagaimana meminimalisasi penggunaan energi akan produk yang dikembangkan.
- 2. Manajemen Sumber: bagiaman merancang suatu aplikasi yang meminimalkan penggunaan ruang penyimpanan, bagaimana meminimalkan proses data transfer.
- 3. Efisiensi desain: bagaimana merancang sistem yang scalable.
- 4. D11.

D. Analisis aspek tambahan

Bila diperlukan dalam perancangan produk yang dibuat dapat memilih salah satu proses analisis aspek yang ada (ethical, legal, environment, political, societal), yang berhubungan dengan produk yang akan dirancang.

Contoh:

- Aspek Legal: Aspek legal terkait dengan hukum yang mungkin muncul pada produk yang akan dibuat, terkait dengan privasi data, hukum-hukum yang mengatur pengambilan dan penyimpanan data. Contoh: Bila pada program yang dibuat berisikan tentang data-data kesehatan, maka perlu melakukan analisis program berdasarkan Undang-Undang Nomor 36 Tahun 2009 tentang kerahasiaan data kesehatan, UU Nomor 19 Tahun 2016 tentang informasi dan transaksi elektronis, dll.
- 2. Aspek Etika: Terkait isu etika yang muncul pada produk yang akan dibuat. Contoh: Isu etika yang dibahas dapat terkait pada tanggung-jawab moral terkait transparasi data, atau pada pembagian hak akses data pada masing-masing *role* dan kerahasiaannya.

2.4.3. Pemilihan Solusi

Berdasarkan usulan solusi yang ditunjukkan oleh tabel 1, *machine learning* dipilih untuk menjadi solusi dalam deteksi DoS/DDoS. Hal ini dikarenakan dalam proses deteksi menggunakan pendekatan berbasis *signature*, IDS tidak dapat mendeteksi serangan yang belum dikenal karena basis data *signature* yang telah kadaluwarsa atau karena *signature* memang belum tersedia. Pendekatan kedua adalah deteksi berbasis anomali dimana pada deteksi ini, perlu diciptakan suatu profil perilaku khusus dari fitur aktivitas jaringan dalam taraf tertentu. Profil ini kemudian dijadikan sebagai dasar untuk mendefinisikan aktivitas jaringan normal [10].

Berdasarkan pada tiga usulan solusi yang ditunjukkan di tabel 2, Snort dipilih untuk menjadi solusi dan teknik untuk Intrusion Detection System/Intrusion Prevention System

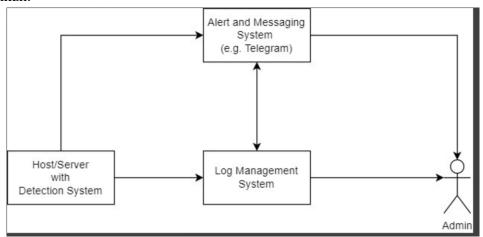
(IDS/IPS). Hal ini dikarenakan Snort lebih mudah untuk diimplementasikan dan memiliki *ruleset* yang dapat dikustomisasi sesuai kebutuhan [13].

Dari tiga pilihan solusi yang ditunjukkan dalam tabel 3, ELK Stack dipilih karena *platform Log Management System* lainnya mematok harga yang cukup tinggi untuk penyimpanannya. ELK Stack merupakan *Log Management System* berbasis open source dan gratis serta memiliki kemampuan untuk menjadi *Log Management System* yang baik.

Dari usulan solusi untuk algoritma machine learning pada tabel 4, Algoritma Naive Bayes dan KNN dipilih. Pada penelitian ini digunakan dua dataset yaitu, CICDoS2017 dan CICDDoS2019. Algoritma Decision Tree memberikan akurasi 60,23% untuk UNSW-NB-15 dan 99,08% untuk dataset CICDDoS2019 [22]. Sementara itu, pada dataset CICDoS2017 Algoritma KNN memberikan akurasi 99,36% [23].

2.5. Skenario pemanfaatan produk oleh stakeholder

Mendeskripsikan bagaimana produk digunakan (dijelaskan sistem/ sub-sistem serta bagaimana masing-masing stakeholder memanfaatkan produk. Dalam bagian ini, tim capstone harus membuat: 1. Gambar rancangan arsitektur high-level dari produk (bagaimana setiap sistem/subsistem terhubung); 2. Penjelasan bagaimana produk yang dikembangkan digunakan per-stakeholder (misal dihubungkan antara fitur dengan stakeholder).


Contoh:

Dalam penelitian ini, dilakukan penelitian untuk mengembangkan sebuah Sistem Monitoring dan Deteksi Serangan DoS/DDoS Menggunakan *Smart Intrusion Detection System* (SIDS) dengan menerapkan pendekatan *Model-Based Feature Selection* ke sistem yang sedang dibangun. Sistem monitoring ini memiliki fungsi utama, yaitu untuk mendeteksi beberapa jenis serangan DoS/DDoS seperti *slow* HTTP DoS, DNS amplification DoS/DDoS, dan DRDoS (*Distributed Reflection Denial of Service*).

Gambar 2.1 menunjukkan arsitektur sistem monitoring ini menggunakan beberapa perangkat lunak seperti IDS Snort, Kafka, dan Elasticsearch Logstash Kibana (ELK Stack). Setiap perangkat lunak memiliki fungsi masing-masing dalam pembangunan sistem ini dan akan dijelaskan pada bagian *development tools*. Berikut merupakan cara kerja Sistem Monitoring dan Deteksi Serangan DoS/DDoS Menggunakan Smart Intrusion Detection System (SIDS):

- 1. IDS Snort melakukan Capture/Sniff trafik jaringan pada host/server kemudian menyimpannya dalam bentuk file pcap.
- 2. File pcap diubah ke bentuk file csv.
- 3. Setelah itu, dilakukan ekstraksi fitur terhadap file pcap yang sudah diubah ke bentuk file .csv berdasarkan format dari dataset yang digunakan.
- 4. Melakukan prediksi menggunakan model machine learning yang sudah dikembangkan.

- 5. Mengirimkan hasil prediksi ke Apache Kafka menggunakan Filebeat.
- 6. Apache Kafka mendistribusikan log yang dikirim dari Filebeat ke Log Management System.
- 7. Log Management System (ELK Stack) melakukan klasifikasi terhadap log yang diterima menjadi log trafik berjenis DoS/DDoS atau trafik normal.
- 8. ElastAlert dapat mengirimkan notifikasi ke aplikasi pesan seperti Whatsapp apabila dibutuhkan.

Gambar 2.1. Arsitektur Sistem Monitoring dan Deteksi Serangan DoS/DdoS

Sistem monitoring DoS/DDoS ini akan dioperasikan di kantor Ditreskrimsus Polda Jateng Subdit V Siber. Pada kantor tersebut diperlukan satu orang administrator yang dapat menjalankan fungsi sebagai berikut :

1. Melakukan Monitoring Log

Sistem monitoring ini dapat menampilan log dari berbagai sistem seperti sistem operasi, router, switch, server, dan lain-lain. Namun untuk proyek ini dikhususkan untuk dapat menampilkan log yang berasal dari IDS/IPS.

2. Melakukan Monitoring Dashboard

Sistem monitoring ini juga terdapat fitur dashboard yang dapat dimanfaatkan oleh administrator agar dapat melakukan monitoring sistem dengan lebih mudah dibandingkan hanya melakukan monitoring log. Hal ini dikarenakan data pada dashboard sudah divisualisasikan.

3. Menerima Alert

Alert atau peringatan pada sistem monitoring ini dikhususkan hanya untuk peringatan DoS/DDoS saja. Namun dapat diperluas lagi untuk memberikan peringatan lain sesuai kebutuhan. Alert atau peringatan ini akan diintegrasikan dengan E-mail dan Whatsapp sehingga dapat memudahkan Administrator jika sedang berada di luar kantor.

3. Usaha pengembangan

3.1. Man-month

Detail dari analisis ekonomis yang sudah disebutkan dalam hal perhitungan biaya pekerja.

Contoh:

Proyek pembuatan Sistem Monitoring dan Deteksi Serangan DoS/DDoS Menggunakan Model-Based Feature Selection ini, akan dikerjakan oleh satu tim Tugas Akhir Capstone program studi S1-Teknik Komputer periode 2023/2024 yang terdiri atas tiga orang mahasiswa Teknik Komputer angkatan 2020. Dua mahasiswa/pengembang akan bekerja menjadi *machine learning engineer* dan satu lainnya akan menjadi *security engineer* dengan tugas yang berbeda-beda. Berikut Gantt Chart pembagian waktu sesuai tugas masing-masing yang ditunjukkan pada Tabel 8 berikut.

Tabel 8. Gantt chart man month

Nama (Jabatan)	Pekerjaan		epte	mb	er		Okt	ober		N	love	mbe	er	D	ese)	mbe	r	Januari			
Nailia (Jauatali)	Fekeljaali	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	Pemahaman DDoS Attack																				
	Pengumpulan Data																				
Aldo Serena Safiola	Pembersihan dan Persiapan Data																				
Hafizh Anjar Saputra	Ekstraksi Fitur																				
(Machine Learning	Pembuatan dan Pelatihan Model																				
Engineer)	Validasi dan Evaluasi Model																				
	Tunning Model																				
	Pemantauan dan Perbaikan																				П
	Analisis Kebutuhan sistem																				
	Pengembangan dan Implementasi Sistem Deteksi DDoS																				
	Implementasi model ML ke dalam IDS/IPS																				
	Pemasangan log management system																				
D-660-411711	Integrasi log management system dengan IDS/IPS.																				П
Rafif Sadid Hamdani	Pengujian Sistem																				
(Security Engineer)	Pengawasan Lalu Lintas Jaringan																				
	Analisis Serangan DDoS																				П
	Deteksi dan Respon Kejadian Keamanan																				П
	Penanganan Serangan																				
	Peningkatan Keamanan																				

3.2. Machine-month

Detail dari analisis ekonomis yang sudah disebutkan dalam hal perhitungan biaya mesin yang digunakan untuk mengembangkan produk. Sistem ini dibuat oleh tiga orang pengembang dengan setiap pengembang yang menggunakan laptop masing—masing. Dari pernyataan tersebut, berarti akan terdapat tiga buah perangkat yang digunakan untuk membuat sistem monitoring DoS/DDoS di mana setiap perangkat ini akan aktif atau digunakan sesuai dengan jam kerja penggunaannya.

Tabel 9. Tabel lama penggunaan mesin dan waktu pengerjaan

Nama (Jabatan)	Mesin	Waktu (Jam)
Aldo Serena Sadiola (Machine Learning Engineer)	Laptop Lenovo G40-45 6410M	264 Jam
Hafizh Anjar Saputra (Machine Learning Engineer)	Laptop Acer Swift 3	324 Jam
Rafif Sadid Hamdani (Security Engineer)	Laptop Lenovo IdeaPad 1 14ALC7	432 Jam
Tota	1020 Jam	

Tabel 9 menunjukkan total dari waktu dalam jam yang akan digunakan selama pembuatan Sistem Monitoring dan Deteksi Serangan DoS/DDoS menggunakan *Model-Based Feature Selection*.

Machine-Month merupakan metrik yang diperlukan untuk menentukan waktu/usaha yang dibutuhkan untuk menyelesaikan satu proyek tugas berdasarkan waktu maksimal penggunaan suatu mesin. Formula untuk menghitung Machine-Month didefinisikan sebagai berikut:

$$Machine - Month = \frac{(Hari\ kerja\ jika\ 24\ jam\ bekerja)}{(Hari\ kerja\ dalam\ 1\ bulan)}$$

Sementara itu, untuk mendapatkan nilai "Hari kerja jika 24 jam bekerja" dapat menggunakan rumus:

Hari kerja jika 24 jam bekerja =
$$\frac{(Waktu pengerjaan dalam jam)}{(24 jam)}$$

Kemudian, untuk nilai "Hari kerja dalam 1 bulan" diasumsikan sama dengan 20 hari, yang berarti 5 hari bekerja dalam seminggu selama 4 minggu. Dengan asumsi hari kerja dalam 1 bulan adalah 20 hari, maka dapat disimpulkan bahwa waktu kerja dalam 9 bulan ialah 9 x 20 hari = 180 hari. Perhitungan *Machine-Month* dari pembuatan sistem monitoring ini dapat dilihat pada Tabel 10.

Tabel 10. Tabel perhitungan Machine-Month

Machine	Hari Kerja dalam 9 Bulan	Hari Kerja dalam 1 Bulan	Waktu Pengerjaan	Hari Kerja jika 24 Jam Bekerja	Machine- Month
Laptop Lenovo G40-45 6410M	5 x 36 = 180 Hari	180/9 = 20 Hari	264 Jam	264/24 = 11 Hari	11/20 = 0,55 Machine- Month
Laptop Acer Swift 3	180 Hari	20 Hari	324 Jam	13,5 Hari	0,675 Machine- Month
Laptop Lenovo IdeaPad 1 14ALC7	180 Hari	20 Hari	432 Jam	18 Hari	0,9 Machine- Month

3.3. Development tools

Detail dari perangkat keras dan perangkat lunak yang digunakan dalam proses pengembangan.

3.3.1. Perangkat Keras

A. PC/Komputer

Pada proyek ini, komputer digunakan sebagai antarmuka untuk mengimplementasikan sistem monitoring dan deteksi DoS/DDoS. Hal ini dikarenakan sistem operasi yang digunakan pada server adalah ClearOS.

B. Laptop

Pada sistem monitoring dan deteksi DoS/DDoS ini, laptop digunakan sebagai tempat pemasangan VirtualBox. Setelah itu dilakukan pemasangan sistem operasi kali linux dan ubuntu pada VirtualBox tersebut.

C. Server

Server adalah sebuah sistem komputer yang terdapat pada jaringan komputer untuk menyediakan suatu layanan kepada pengguna yang disebut sebagai client [24]. Server digunakan sebagai tempat pemasangan perangkat lunak yang berkaitan dengan sistem monitoring DoS/DDoS ini. Selain itu semua log serangan DoS/DDoS juga akan disimpan di server.

3.1.1. Perangkat Lunak

A. VirtualBox

VirtualBox adalah perangkat lunak virtualisasi, yang dapat digunakan untuk mengeksekusi sistem operasi tambahan di dalam sistem operasi utama. VirtualBox berfungsi untuk melakukan virtualisasi sistem operasi. VirtualBox juga dapat digunakan untuk membuat virtualisasi jaringan

komputer [25]. Pada sistem yang dibuat, VirtualBox digunakan untuk untuk menjalankan sistem operasi Kali Linux dan Ubuntu.

B. ClearOS

ClearOS adalah Linux yang di kostumasi khusus untuk keperluan server. Dengan berbagai fitur yang *powerfull* dan *setting* yang sederhana, ClearOS menjadi alternatif pilihan, baik untuk pemula yang tidak mengerti Linux sama sekali maupun untuk profesional yang memerlukan kemampuan terbaik dari OS Linux *server* [23].

C. Ubuntu

Ubuntu adalah sistem operasi turunan dari distro Linux jenis Debian *unstable* (sid), Ubuntu merupakan *project* untuk komunitas, yang bertujuan untuk menciptakan sebuah sistem operasi beserta dengan paket aplikasinya yang bersifat *free* dan *open source*, karena Ubuntu mempunyai prinsip untuk selamanya gratis dan tidak ada tambahan untuk versi *enterprise edition* [24]. Ubuntu merupakan salah satu sistem operasi yang digunakan dalam sistem ini. Ubuntu akan berperan sebagai pusat untuk melakukan pemasangan *tools* SIDS dan *log management system*.

D. Kali Linux

Kali Linux merupakan sistem operasi open source yang dapat digunakan untuk penetration testing terhadap suatu sistem dan jaringan komputer. Terdapat lebih dari 300 tools dengan fungsi masing-masing yang dapat digunakan untuk melakukan pengujian keamanan terhadap suatu sistem jaringan. Kali Linux dikembangkan dan didanai oleh Offensive Security [25]. Kali Linux merupakan salah satu sistem operasi yang digunakan dalam sistem, Sistem operasi Kali Linux akan digunakan sebagai client atau attacker yang akan melancarkan serangan DoS/DDoS.

E. Snort

Snort adalah sistem pendeteksi dan pencegahan intrusi jaringan sumber terbuka. Ini dapat menganalisis analisis lalu lintas dan aliran data secara real-time dalam jaringan. Snort mampu memeriksa analisis protokol dan dapat mendeteksi berbagai jenis serangan. Dalam NIDS, Snort pada dasarnya memeriksa paket melawan aturan yang ditulis oleh pengguna. Aturan Snort dapat ditulis dalam bahasa apa pun, strukturnya juga baik dan mudah dibaca, serta aturan dapat dimodifikasi juga [26].

F. Apache Kafka

Apache Kafka adalah sebuah *platform open-source* yang digunakan untuk mengelola aliran data secara *real-time*. Apache Kafka pada awalnya dikembangkan di LinkedIn dan sekarang menjadi bagian dari yayasan Apache Software Foundation. Apache Kafka dirancang untuk menangani volume data yang besar dan memungkinkan pertukaran data yang efisien antara *producer* dan *consumer* [27].

G. ELK Stack

Elasticsearch Logstash Kibana (ELK Stack) merupakan komponen yang tepat dalam membangun log event management. ELK Stack dapat memberi informasi kepada sistem

administrator mengenai tren, statistik, dan anomali yang terjadi. ELK Stack merupakan kumpulan dari tiga alat yaitu Elasticsearch, Logstash, dan Kibana [28].

3.4. Test equipment

Gambaran pengujian yang akan dilakukan untuk menguji produk yang diusulkan beserta instrumen yang digunakan.

Contoh:

Pengujian pada sistem ini akan dilakukan dengan menggunakan dataset dan pengujian secara langsung. Pengujian secara langsung akan digunakan dataset dari CICDoS2017 dan CICDDoS2019. Sementara itu, Untuk keperluan pengujian secara langsung digunakan beberapa perangkat lunak DoS dan DDoS yang dipasang pada sistem operasi kali linux. Perangkat lunak tersebut akan digunakan untuk menguji sistem yang sudah terpasang dengan *Smart Intrusion Detection System* (IDS). Perangkat lunak ini dibagi sesuai dengan jenis DoS/DDoS yang akan diuji. Berikut beberapa perangkat lunak DoS/DDoS yang akan digunakan untuk melakukan pengujian yang bisa dilihat pada Tabel 11.

Tabel 11. Perangkat lunak untuk pengujian DoS/DDoS

Jenis Serangan	Nama Perangkat Lunak DoS/DDoS
Slow HTTP DoS	- Slowhttptest
DNS Amplification DoS/DDoS	- Ethanwilloner - Saddam - NSREFLECTDNS Flooder v1.1 - DNSDRDOS

3.5. Kebutuhan pakar

Jika membutuhkan saran ahli dalam mengembangkan sistem, maka tambahkan di sini judgment dari ahli tersebut.

Contoh:

Pengembangan proyek Sistem Monitoring dan Deteksi Serangan DoS/DdoS menggunakan Smart Intrusion Detection System (SIDS) berbasiskan algoritma machine learning yang akan diimplementasikan di Ditreskrimsus Polda Jateng Semarang ini tidak memerlukan kebutuhan pakar dikarenakan pada proyek ini hanya diperlukan koordinasi antara stakeholder dan pengembang mengenai proyek agar sesuai dengan tujuan dan keinginan yang ditetapkan.

4. Kesimpulan

Kesimpulan yang dapat diambil dari dokumen ini adalah:

- a. Snort digunakan sebagai alat Intrusion Detection System (IDS) terhadap serangan DoS/DDoS.
- b. Pendekatan yang digunakan adalah menggunakan algoritma machine learning.
- c. Jenis serangan DoS/DDoS yang akan dideteksi yaitu, slow HTTP DoS, DNS amplification DoS/DDoS, dan DRDoS (Distributed Reflection Denial of Service). Tiga jenis serangan ini akan diuji menggunakan dataset CICDoS2017 dan CICDDoS2019. Selain itu dilakukan juga uji secara langsung menggunakan tools yang dipasang pada sistem operasi Kali Linux.
- d. Perbedaan serangan DoS dan DDoS terletak pada subjek yang melakukan penyerangan. Serangan DoS biasanya dilakukan dari satu sumber atau satu lokasi. Sementara itu, serangan DDoS biasanya dilakukan oleh bot yang telah dikonfigurasi oleh penyerang.
- e. Sistem operasi yang digunakan adalah berbasis Linux.

Template dan Dokumen C200

Topik Capstone	Topik Capstone	Topik Capstone					
Siklus / Tahun	*Gasal atau Genap / (tahun)						
Judul Dokumen	Capstone TA						
	Judul Capstone Proyek kelomp	ok					
Jenis Dokumen	SPESIFIKASI						
	Catatan: Penggunaan dan	penyebaran dokumen ini					
	dikendalikan oleh Departemen Teknik Komputer Universitas						
	Diponegoro						
Nomor Dokumen	(C200.[NoRev]TA[tahun].[1/2	2].[KodeKelompok]					
Nomor Revisi	NoRev						
Nama File	Kode Kelompok.pdf						
Tanggal Penerbitan	Tanggal Penerbitan						
Unit Penerbit	Departemen Teknik Komputer Universitas Diponegoro						
Jumlah Halaman	Jumlah Halaman	Tidak termasuk sampul					

		Data Pengusul		
Pengusul	Nama		Jabatan	Anggota
	NIM			
	Tanggal		Tanda Tangan	
	Nama		Jabatan	Anggota
	NIM			
	Tanggal		Tanda Tangan	
	Nama		Jabatan	Anggota
	NIM			
	Tanggal		Tanda Tangan	
Pembimbing 1	Nama		Tanda Tangan	
(Utama)				
	NIP.			
	Tanggal			
Pembimbing 2	Nama		Tanda Tangan	

NIP.	
Tanggal	

Versi, Tanggal, Oleh	Perbaikan

Daftar Isi

<u>1</u> .	Pend	<u>lahuluan</u>	39
	<u>1.1.</u>	Ringkasan isi Dokumen	39
	<u>1.2.</u>	Aplikasi Dokumen	39
	1.3.	<u>Referensi</u>	39
	<u>1.4.</u>	<u>Daftar Singkatan</u>	39
2.	Spes	ifikasi Sistem dan Pengguna.	40
	<u>2.1.</u>	Gambaran Sistem	40
	<u>2.2.</u>	Batasan Sistem	40
	<u>2.3.</u>	Kebutuhan Fungsional	41
	2.3.1	. <u>Deskripsi Fitur Utama</u>	41
	2.3.2	2. Alur Proses Utama	42
	<u>2.4.</u>	Kebutuhan Data	46
	<u>2.5.</u>	Kebutuhan Non Fungsional	47
	2.5.1	. Kinerja Sistem.	48
	2.5.2	2. <u>Keamanan Sistem</u> .	48
	2.5.3	3. <u>Keandalan Sistem</u> .	49
	2.5.4	L. Kebutuhan Skalabilitas	49
	2.5.5	5. Kebutuhan Teknologi dalam Lingkungan Operasional	50
	<u>2.6.</u>	Kebutuhan Arsitektur Sistem	
	<u>2.7.</u>	Karakteristik Pengguna / Role & Permission	52
	<u>2.8.</u>	<u>Target Sistem</u>	53
<u>3.</u>	Keb	utuhan Antarmuka Sistem	53
	<u>3.1.</u>	Antarmuka Perangkat Keras	53
	<u>3.2.</u>	Antarmuka Perangkat Lunak	53
	<u>3.3.</u>	Antarmuka Komunikasi	54
	<u>3.4.</u>	Kebutuhan Integrasi dengan Sistem Lain (Opsional)	54

Pendahuluan

Ringkasan isi Dokumen

Jelaskan dengan singkat mengapa dokumen ini dibuat. Sertakan pernyataan tujuan spesifik, seperti mendefinisikan ruang lingkup sistem, mendokumentasikan kebutuhan pengguna, dan memastikan pemahaman yang seragam di antara tim pengembang dan pemangku kepentingan.

Contoh:

Dokumen ini disusun untuk memberikan deskripsi mendetail tentang spesifikasi sistem "Sistem Monitoring dan Deteksi Serangan Slow DoS/DRDoS Berbasiskan Ensemble Learning menggunakan ELK Stack". Sistem ini dirancang untuk Ditreskrimsus Polda Jateng Semarang dengan tujuan:

- Mengidentifikasi dan memitigasi serangan Slow DoS dan DRDoS pada infrastruktur jaringan.
- Memberikan informasi real-time mengenai aktivitas mencurigakan.
- Menghasilkan laporan analitik yang dapat digunakan untuk investigasi lebih lanjut.

Dokumen ini bertujuan untuk memastikan keselarasan antara kebutuhan pengguna dan implementasi sistem melalui spesifikasi yang terperinci.

Aplikasi Dokumen

Dokumen ini berlaku sebagai technical specification design yang berfungsi untuk menjelaskan:

- 1. Gambaran proses rekayasa atau proses bisnis yang diakomodasi oleh system, termasuk ruang lingkup sistem.
- 2. Target efisiensi/efektifitas yang ingin dicapai.
- 3. Dokumentasi dari spesifikasi sistem yang dibangun

Referensi

- [5] P. Citra, "Kombinasi Sobel, Canny Dan Otsu Untuk Segmentasi Citra," Technologia, vol. 13, no. 2, hal. 102–107, 2022.
- [6] S. C. Re, K. Daya, D. Tanggung, dan J. Perusahaan, "Keselamatan dan Kesehatan Kerja," 2013, Diakses: Feb 10, 2023 Tersedia pada: www.ifrro.org.
- [7] "Raspberry Pi 3 Model B+," Diakses: Feb 10, 2023. Tersedia pada: www.raspberrypi.org/products/raspberry.
- [8] IEA Constituent Agreements, 2021. Graduate Attributes and Professional Competences. Available at: https://www.ieagreements.org/assets/Uploads/IEA-Graduate-Attributes-and-Professional-Competencies-2021.1-Sept-2021.pdf [Accessed 13 January 2025].

Daftar Singkatan

Akronim	Pengertian
---------	------------

DoS	Denial of Service
DDoS	Distributed Denial of Service
IDS	Intrusion Detection System
IPS	Intrusion Prevention System

Spesifikasi Sistem dan Pengguna

Gambaran Sistem

Jelaskan secara singkat tujuan dari sistem yang akan dibangun. Nyatakan alasan utama mengapa sistem ini dirancang dan apa manfaat utama yang diharapkan dari penerapan sistem.

Contoh:

Sistem Monitoring dan Deteksi Serangan Slow DoS/DRDoS berbasis Ensemble Learning menggunakan ELK Stack dirancang untuk meningkatkan keamanan jaringan Ditreskrimsus Polda Jateng. Sistem ini mengintegrasikan teknologi ELK Stack dengan model machine learning berbasis Ensemble Learning untuk memberikan kemampuan deteksi dini terhadap serangan jaringan. Data log jaringan dikumpulkan dari berbagai sumber, seperti firewall, router, dan server aplikasi, melalui Logstash. Logstash memproses dan memformat data sebelum diteruskan ke Elasticsearch, yang bertugas menyimpan log dalam indeks terstruktur untuk memudahkan pencarian dan analisis data dalam jumlah besar.

Proses deteksi ancaman dilakukan dengan menerapkan model Ensemble Learning yang menggabungkan algoritma seperti Random Forest dan Gradient Boosting. Model ini menganalisis log yang telah disimpan di Elasticsearch untuk mengidentifikasi pola-pola yang mencurigakan, seperti karakteristik serangan Slow DoS atau DRDoS. Hasil analisis ditampilkan melalui Kibana, yang menyediakan visualisasi interaktif dalam bentuk dashboard. Dashboard ini dirancang untuk menampilkan statistik aktivitas jaringan, grafik anomali, serta laporan serangan yang terdeteksi. Selain itu, sistem dilengkapi dengan mekanisme notifikasi real-time yang mengirimkan peringatan kepada admin Ditreskrimsus melalui email atau aplikasi pesan untuk memastikan respons cepat terhadap potensi ancaman.

Keunggulan sistem ini meliputi kemampuan deteksi ancaman dengan akurasi tinggi, skalabilitas yang mendukung pertumbuhan data log yang besar, dan kemudahan integrasi dengan infrastruktur jaringan yang sudah ada di Ditreskrimsus Polda Jateng. Sistem ini dirancang tidak hanya untuk memantau aktivitas jaringan secara real-time, tetapi juga untuk memberikan data analitik yang mendalam guna mendukung investigasi forensik digital. Dengan mengadopsi sistem ini, Ditreskrimsus Polda Jateng diharapkan dapat meningkatkan efektivitas operasional mereka dalam mendeteksi dan mengatasi serangan siber.

Batasan Sistem

Contoh:

- 1. Pendeteksian DDoS Terbatas pada Layanan Tertentu: Sistem hanya akan mendeteksi serangan DDoS pada perangkat atau layanan IoT yang terhubung dengan jaringan dan tidak mencakup serangan pada infrastruktur jaringan secara umum.
- 2. Model AI Terbatas pada Jenis Serangan Tertentu: Sistem menggunakan model AI yang terlatih untuk mendeteksi serangan DDoS berbasis pada pola lalu lintas data. Model ini tidak akan mendeteksi jenis serangan lainnya, seperti serangan malware atau phishing.
- 3. Monitoring Perangkat IoT Tertentu: Hanya perangkat IoT yang terhubung dengan jaringan yang akan dimonitor. Perangkat yang tidak terhubung atau tidak mendukung protokol komunikasi yang kompatibel tidak akan dimonitor.

Kebutuhan Fungsional

Sub-bab ini akan menjelaskan apa yang harus dilakukan oleh sistem untuk memenuhi kebutuhan yang telah dipaparkan pada Gambaran Sistem. Spesifikasi ini berfokus pada fungsi yang akan disediakan oleh sistem, yaitu tindakan atau layanan yang harus mampu dilakukan oleh sistem yang akan dibangun, tanpa membahas secara detail bagaimana fungsi tersebut akan diimplementasikan secara teknis.

Lengkap dengan list tabel Kebutuhan Fungsional.

Tabel 4.9 Functional requirements

No	Kategori Pengguna	Kode	Deskripsi Kebutuhan	Prioritas
1	Administrator / Teknisi	LUNA-01	Melakukan Autentikasi	Tinggi
2	Administrator / Teknisi	LUNA-02	Mengakses fitur Dashboard Monitoring	Tinggi
3	Teknisi	LUNA-03	Mengakses fitur Configuration	Tinggi

Deskripsi Fitur Utama

Deskripsikan / gambarkan secara jelas tentang fitur inti pada sistem yang akan dibangun. Lebih baik jika disertai dengan manfaatnya masing-masing.

Contoh:

Luna System digunakan untuk mendeteksi serangan Slow DoS/DRDoS menggunakan pembelajaran ensemble dan Elk Stack. Adapun fungsi utama di dalamnya adalah sebagai berikut

1. Dashboard dan Visualisasi Data

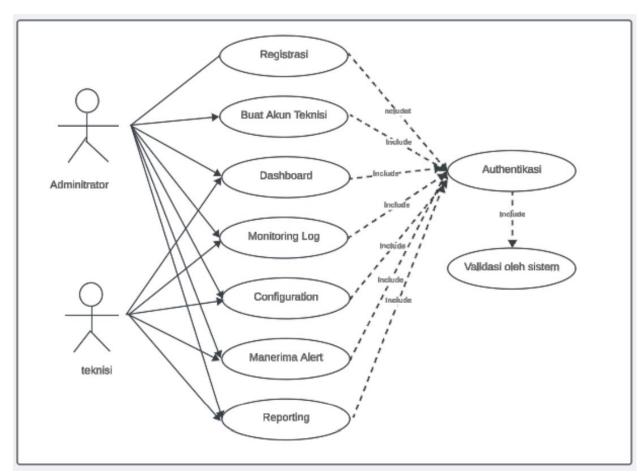
Deskripsi: Dashboard akan disajikan dalam bentuk website. Dashboard ini akan berisi data atau log riwayat serangan DoS/DRDoS serta beberapa visualisasi data yang akan mempermudah administrator dalam melakukan monitoring sistem.

Manfaat: ...

2. Notifikasi real-time

Deskripsi: Sistem ini akan menggunakan aplikasi pesan yaitu Telegram untuk mengirimkan notifikasi kepada administrator. Ketika terjadi serangan Slow DoS/DRDoS, sistem akan mendeteksinya dan akan langsung mengirimkan notifikasi ke aplikasi tersebut.

Manfaat: ...


Alur Proses Utama

Jelaskan alur bisnis bagaimana sistem bekerja, dilengkapi dengan flowchart secara detail, lebih baik lengkap dengan alur negatifnya. Dapat diperjelas menggunakan Usecase Diagram, Usecase Scenario, dan Activity Diagram/Business Process Model and Notation (BPMN) untuk tiap bisnis proses utama.

Berlaku juga bagi yang memiliki project hardware terkait embedded system / IoT. Contoh:

Usecase Diagram

Dalam pengembangan Luna System ini terdapat enam Diagram Use Case sesuai dengan enam fitur utama yang dikembangkan yaitu Monitoring Dashboard, Monitoring Log, Configuration Device, Menerima Alert, dan Reporting.

Gambar 1. Usecase Diagram

Usecase scenario

Usecase scenario dari Diagram Use Case Luna System memiliki total 5 bagian untuk setiap fitur utama yaitu Monitoring Dashboard, Monitoring Log, Configuration Device, Menerima Alert, Reporting.

Tabel 1. Tabel *Use Case Scenario* Autentikasi

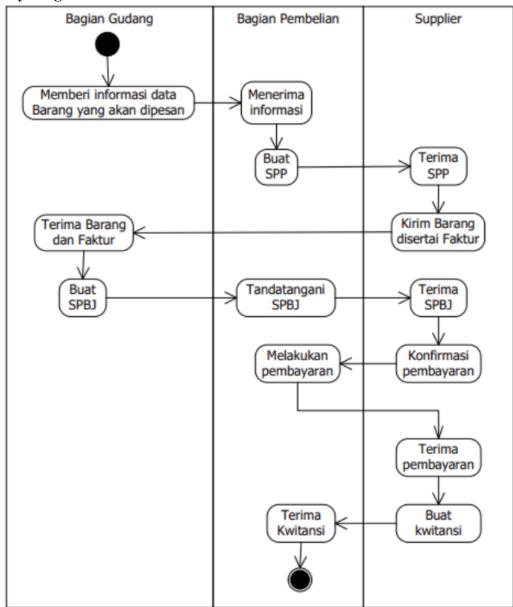
Use Case ID Number	1		
Use Case Name	Autentikasi		
Use Case Description	Menggambarkan proses autentikasi.		
Primary Actor	Teknisi, Administrator.		
Pre-Condition	User belum login ke sistem.		
Primary Flow of Events	User Action	System Response	
	1. User masuk ke halaman		
		2. Sistem menampilkan form login	
	3. User memasukkan username dan		
	password		
		4. Sistem melakukan validasi data	
	5. Setelah data valid, <i>User</i> melakukan <i>login</i>		
		6. Sistem menampilkan halaman dashboard.	
	7. User berada di halaman monitoring dashboard.		
Error Flow of Events	4a. <i>User</i> memberikan data <i>login</i> yang tidak sesuai.		
		4b. Sistem menolak proses <i>login</i> dan menampilan pesan <i>error</i> .	
Post Condition	User berhasil login.		

Tabel 2. Tabel *Use Case Scenario* Membuat Akun Teknisi

Use Case ID Number	2			
Use Case Name	Buat akun teknisi	Buat akun teknisi		
Use Case Description	Menggambarkan proses dibuatnya akun te	Menggambarkan proses dibuatnya akun teknisi		
Primary Actor	Administrator			
Secondary Actor	Teknisi			
Pre-Condition	Administrator telah login ke sistem.			
Primary Flow of Events	User Action	System Response		
	1. Admin masuk ke menu user management			
		2. Sistem menampilkan menu teknisi		
	3. Admin memilih menu "tambahkan teknisi"			

		4. Sistem mengarahkan ke halaman buat teknisi baru.
	5. Admin memasukkan data teknis (username, password)	i
		6. Sistem menyimpan data dan menambahkan menjadi teknisi baru. Teknisi siap menggunakan akun.
Error Flow of Events	5a. Admin memberikan data yang tidak sesuai.	
		5b. Sistem menolak proses pembuatan akun teknisi dan menampilkan pesan error.
Post Condition	Akun teknisi bisa digunakan	

Tabel 3. Tabel Use Case Scenario Menampilkan Dashboard


THE TOTAL CONTROL OF THE PROPERTY OF THE PROPE				
Use Case ID Number	3			
Use Case Name	Menampilkan Dashboard	Menampilkan Dashboard		
Use Case Description	Menggambarkan proses monitoring das	hboard		
Primary Actor	Administrator, Teknisi			
Secondary Actor				
Pre-Condition	User telah login ke sistem			
Primary Flow of Events	User Action	System Response		
	1. User memilih menu Dashboard			
		 Sistem menampilkan menu untuk melihat visual dari data-data hasil deteksi seperti grafik dan activity log. 		
Error Flow of Events		2b. <i>Dashboard</i> tidak menampilkan data karena belum dilakukan deteksi pada <i>traffic</i> jaringan.		
Post Condition	User dapat melihat tampilan visual dari	data-data hasil deteksi seperti grafik dan activity log.		

Tabel 4. Tabel Use Case Scenario Monitoring Log

Use Case Name	Monitoring Log	
Use Case Description	Meanggambarkan proses monitoring Log	
Primary Actor	Teknisi	
Secondary Actor	Administrator	
Pre-Condition	Teknisi telah <i>login</i> ke sistem	
Primary Flow of Events	User Action	System Response
		Sistem melakukan pengamatan pada lalu lintas jaringan, permintaan HTTP, atau kejadian keamanan.

		2. Sistem melakukan Analisis pola lalu lintas log
		3. Sistem menerapkan teknik deteksi anomali untuk membandingkan perilaku lalu lintas saat ini dengan baseline normalitas.
	 User mengamati proses monitoring dan melakukan penanganan apabila ditemukan serangan keamanan. 	
Error Flow of Events		1a. Sistem tidak menampilkan proses pengamatan pada lalu lintas jaringan, permintaan HTTP, atau kejadian keamanan dikarenakan belum berjalannya proses deteksi.
Post Condition	User mengamati proses, melakukan pe jika diperlukan.	enanganan, dan melakukan perbaikan pada infrastruktur

Activity Diagram

Gambar 2. Contoh Activity Diagram

Activity diagram, dalam bahasa Indonesia diagram aktivitas, yaitu diagram yang dapat memodelkan proses-proses yang terjadi pada sebuah sistem. Runtutan proses dari suatu sistem digambarkan secara vertikal. Activity diagram merupakan pengembangan dari Use Case yang memiliki alur aktivitas.

Jelaskan alur secara deskriptif beserta aturannya jika ada.

Kebutuhan Data

Kebutuhan data merujuk pada semua jenis data yang diperlukan oleh sistem untuk berfungsi dengan baik. Bagian ini biasanya menjelaskan secara rinci tentang data apa saja yang

harus dikumpulkan, diolah, disimpan, dan dikelola oleh sistem untuk memenuhi tujuan dan persyaratan yang ditetapkan.

- 1. Jenis Data: Mengidentifikasi tipe data yang akan digunakan, misalnya log jaringan, metadata, atau informasi konfigurasi.
 - Contoh: Data log dari firewall, server, dan perangkat jaringan lainnya.
- 2. Sumber Data: Menjelaskan dari mana data tersebut berasal.
 - Contoh: Data log berasal dari perangkat seperti router, switch, atau server.
- 3. Format Data: Format atau struktur data yang harus digunakan untuk memastikan kompatibilitas.
 - Contoh: JSON, CSV, atau format log lainnya.
- 4. Volume Data: Estimasi jumlah data yang akan dikelola oleh sistem, baik dalam ukuran file (MB, GB) maupun jumlah record.
 - Contoh: Sistem harus mampu menangani minimal 1.000 log per detik.
- 5. Frekuensi Pengumpulan Data: Menjelaskan seberapa sering data akan diperbarui atau dikumpulkan.
 - Contoh: Data dikumpulkan secara real-time atau dalam interval tertentu (misalnya, setiap 5 menit).
- 6. Penyimpanan Data: Kebutuhan penyimpanan, termasuk kapasitas penyimpanan dan durasi retensi data.
 - Contoh: Data log harus disimpan selama 6 bulan untuk keperluan audit dan analisis.
- 7. Keamanan Data: Persyaratan perlindungan terhadap data untuk memastikan kerahasiaan, integritas, dan ketersediaannya.
 - Contoh: Semua data harus dienkripsi saat transit dan saat disimpan.
- 8. Kebutuhan Pemrosesan Data: Menjelaskan bagaimana data akan diolah, seperti analisis, transformasi, atau agregasi.
 - Contoh: Data log diproses melalui Logstash untuk parsing dan dikirim ke Elasticsearch untuk analisis lebih lanjut.

Contoh:

Dalam kasus Sistem Monitoring dan Deteksi Serangan Slow DoS/DRDoS, kebutuhan data mencakup:

- Data log yang mencakup informasi tentang alamat IP sumber, waktu akses, jenis permintaan, dan status respons.
- Data pelatihan untuk model Ensemble Learning, seperti pola serangan sebelumnya atau data normal dari aktivitas jaringan.
- Informasi konfigurasi, seperti aturan firewall atau daftar putih/daftar hitam IP.

Kebutuhan Non Fungsional

Spesifikasi non-fungsional berfokus pada "bagaimana sistem beroperasi" dan kualitas yang harus dimiliki oleh sistem untuk memenuhi kebutuhan pengguna dan stakeholder.

Lengkap dengan list tabel kebutuhan Non Fungsional.

Tabel 4.10 Non-functional requirements

SRS-Id	Parameter	Requirement		
LUNA-01	Availability	Aplikasi ini dapat beroperasi 7 hari dalam seminggu		
		dan 24 jam dalam satu hari		
LUNA-02	Reliability	System akan menjamin minimalisasi tingkat kegagalan		
		dalam pengoperasian		
LUNA-04	Portability	Sistem dapat dioperasikan pada komputer yang		
		memiliki sistem operasi Windows dan web browser		
LUNA-06	Response	Memberikan waktu respon maksimal kira-kira 2 detik		
	time			
LUNA-07	Safety	Sistem menampilkan dan menulis data sesuai dengan		
		kewenangan yang dimiliki		

Contoh:

Spesifikasi non-fungsional berfokus pada bagaimana sistem beroperasi serta kualitas yang harus dimiliki oleh sistem untuk memenuhi kebutuhan pengguna dan stakeholder. Pada sistem monitoring dan deteksi serangan Slow DoS/DRDoS berbasis Ensemble Learning menggunakan ELK Stack, beberapa spesifikasi non-fungsional yang perlu dipertimbangkan adalah:

Kinerja Sistem

Deskripsi seperti waktu respons maksimum, throughput, atau kebutuhan bandwidth.

Contoh:

- Waktu Respons Maksimum: Sistem harus mampu memberikan respons dalam waktu kurang dari 5 detik untuk setiap deteksi serangan yang terjadi pada jaringan yang dipantau.
 Waktu respons ini penting agar petugas di Ditreskrimsus Polda Jateng dapat segera melakukan tindakan mitigasi terhadap serangan yang terdeteksi.
- Throughput: Sistem diharapkan mampu memproses data log jaringan yang masuk dengan throughput minimal 1.000 log per detik. Hal ini memastikan bahwa sistem dapat menangani volume data yang tinggi dari berbagai sumber perangkat dan server yang ada di lingkungan Ditreskrimsus Polda Jateng.
- Kebutuhan Bandwidth: Sistem monitoring ini memerlukan bandwidth minimal 100 Mbps untuk memastikan data yang dikirimkan dari berbagai perangkat jaringan dapat diterima dan dianalisis secara real-time tanpa menyebabkan latensi atau penurunan kualitas deteksi serangan.

Keamanan Sistem

Persyaratan keamanan seperti enkripsi data atau otentikasi multi-faktor.

Contoh:

Keamanan sistem sangat penting, mengingat sistem ini beroperasi dalam konteks jaringan yang sensitif dan rentan terhadap serangan. Beberapa persyaratan keamanan yang harus dipenuhi oleh sistem adalah:

- Enkripsi Data: Semua data yang dikirimkan antara perangkat, server, dan aplikasi monitoring harus dienkripsi menggunakan protokol TLS/SSL untuk menjaga kerahasiaan dan integritas data. Hal ini untuk melindungi data yang dapat berisi informasi sensitif, seperti log dan metadata terkait serangan.
- Otentikasi Multi-Faktor (MFA): Untuk meningkatkan keamanan akses ke antarmuka administrasi sistem, sistem harus menggunakan otentikasi multi-faktor, yang mengharuskan pengguna untuk memasukkan kombinasi informasi yang lebih dari sekadar username dan password (misalnya, kode OTP atau autentikasi berbasis biometrik).
- Pengelolaan Akses Berbasis Peran (RBAC): Sistem harus mengimplementasikan pengelolaan akses berbasis peran untuk memastikan bahwa hanya pengguna yang memiliki izin yang tepat yang dapat mengakses fungsionalitas sensitif, seperti pengaturan deteksi serangan atau analisis data.

Keandalan Sistem

Tingkat ketersediaan atau waktu kerja (uptime) yang diharapkan.

Contoh:

Keandalan sistem berfokus pada ketersediaan dan waktu operasi sistem yang tinggi, yang penting untuk memastikan sistem dapat berfungsi secara terus-menerus tanpa gangguan signifikan.

- Uptime: Sistem harus memiliki tingkat ketersediaan atau uptime sebesar 99.9%, yang berarti sistem hanya boleh mengalami downtime maksimal 8 jam per tahun. Hal ini untuk memastikan bahwa sistem monitoring selalu tersedia untuk mendeteksi dan menangani serangan secara real-time.
- Pemulihan dari Gangguan (Disaster Recovery): Sistem harus dilengkapi dengan rencana pemulihan bencana yang memungkinkan pemulihan dalam waktu maksimal 2 jam jika terjadi kegagalan sistem besar atau kehilangan data.

Kebutuhan Skalabilitas

Penjelasan kemampuan sistem untuk berkembang dengan meningkatnya jumlah pengguna. **Contoh:**

Sistem ini harus mampu berkembang seiring dengan meningkatnya jumlah perangkat yang terhubung ke jaringan dan volume data yang dihasilkan. Kebutuhan skalabilitas mencakup beberapa aspek:

• Skalabilitas Horizontal: Sistem harus dirancang agar dapat melakukan skalabilitas horizontal, memungkinkan penambahan server atau node baru ke dalam klaster ELK Stack

- jika volume data meningkat atau jumlah perangkat yang dipantau bertambah. Dengan demikian, sistem dapat menangani beban yang lebih tinggi tanpa penurunan kinerja.
- Skalabilitas Proses Deteksi: Sistem harus dapat menyesuaikan jumlah dan jenis model machine learning dalam ensemble learning berdasarkan jumlah data dan kompleksitas serangan. Sebagai contoh, jika data log yang masuk meningkat, maka jumlah model ensemble yang digunakan dapat ditingkatkan untuk menjaga akurasi deteksi.
- Integrasi dengan Sistem Eksternal: Sistem harus mampu berintegrasi dengan sistem keamanan eksternal lainnya, seperti firewall, IDS/IPS, dan sistem manajemen jaringan lainnya, agar dapat menangani peningkatan jumlah perangkat atau perubahan kebijakan keamanan tanpa gangguan operasional.

Kebutuhan Teknologi dalam Lingkungan Operasional

Bab ini menggambarkan berbagai **teknologi** yang dibutuhkan untuk mendukung pengembangan dan operasi sistem yang sedang dirancang pada lingkungan operasional. **Kebutuhan teknologi** mencakup perangkat lunak, perangkat keras, dan lingkungan operasional yang diperlukan agar sistem dapat berfungsi dengan baik.

Penjelasan lingkungan operasional

Perangkat Lunak

Perangkat lunak yang diperlukan untuk mendukung pengembangan, operasi, dan pemeliharaan sistem. Ini mencakup sistem operasi, perangkat lunak aplikasi, pustaka, framework, serta alat bantu lain yang diperlukan untuk mengembangkan dan menjalankan fungsionalitas sistem.

• Sistem Operasi:

- o Linux (Ubuntu, CentOS) digunakan sebagai sistem operasi untuk server pusat yang menjalankan sistem monitoring dan analitik.
- Windows Server bisa digunakan jika ada kebutuhan tertentu untuk aplikasi berbasis Windows.

• Perangkat Lunak AI:

- TensorFlow atau PyTorch untuk membangun model AI yang digunakan untuk mendeteksi pola serangan DDoS.
- Scikit-learn untuk implementasi algoritma machine learning lainnya, seperti analisis trafik jaringan.

• Perangkat Lunak Jaringan:

- o Wireshark untuk pemantauan dan analisis trafik jaringan.
- o Zabbix atau Nagios untuk pemantauan jaringan secara real-time.

• Database:

- MySQL atau PostgreSQL untuk menyimpan data yang berkaitan dengan status perangkat IoT, serangan DDoS, dan log lainnya.
- InfluxDB atau Elasticsearch untuk menyimpan data time-series dari perangkat IoT yang terus-menerus mengirim data.

• Alat Analitik & Visualisasi:

- o Grafana untuk visualisasi data real-time dari perangkat IoT dan status DDoS.
- Kibana (untuk Elasticsearch) untuk menganalisis dan menampilkan log serta data yang relevan dengan serangan DDoS

Perangkat Keras

Perangkat keras yang diperlukan untuk menjalankan dan mendukung perangkat lunak dan fungsi sistem. Ini mencakup server, perangkat IoT, serta perangkat pendukung lain seperti sensor, dan perangkat jaringan.

• Server:

- Server pusat untuk menjalankan aplikasi monitoring dan model AI. Server ini bisa menggunakan spesifikasi seperti:
 - CPU: Intel Xeon atau AMD EPYC untuk pemrosesan data besar dan pembelajaran AI.
 - RAM: 32GB atau lebih, tergantung pada kebutuhan pemrosesan.
 - Penyimpanan: SSD untuk kecepatan akses data tinggi, 1TB atau lebih.

• Perangkat IoT:

- Sensor jaringan dan perangkat IoT yang digunakan untuk mengumpulkan data trafik dari perangkat yang terhubung di jaringan, seperti sensor IoT Edge Devices atau IoT Gateways yang terhubung ke perangkat lain di jaringan.
- o Raspberry Pi atau ESP32 yang digunakan untuk mengumpulkan data dari perangkat IoT dan mengirimkannya ke server pusat.

• Perangkat Jaringan:

- Switch dan Router untuk menghubungkan perangkat IoT ke server pusat dan mengelola lalu lintas data.
- Firewall hardware atau IDS/IPS (Intrusion Detection/Prevention Systems) yang dapat diintegrasikan dengan sistem monitoring untuk melakukan mitigasi otomatis terhadap serangan DDoS yang terdeteksi.

• Perangkat AI dan Komputasi:

- GPU (Graphics Processing Unit) untuk mempercepat proses pelatihan model AI jika diperlukan, terutama dalam penggunaan deep learning.
- Edge computing devices untuk mengolah data lebih dekat ke sumbernya (di tempat perangkat IoT berada), mengurangi latensi.

Kebutuhan Arsitektur Sistem

Menyediakan gambaran umum komponen utama dan interaksi antar komponen sistem secara keseluruhan.

Contoh:

Sistem ini dirancang untuk menyediakan gambaran umum tentang bagaimana sistem monitoring jaringan IoT dengan kemampuan deteksi DDoS. Sistem ini mengintegrasikan

komponen utama jaringan IoT dengan algoritma kecerdasan buatan untuk mendeteksi dan merespons potensi ancaman secara otomatis.

Karakteristik Pengguna / Role & Permission

Penjelasan secara rinci siapa saja pengguna sistem yang diusulkan, peran mereka, dan izin akses yang dimiliki masing-masing peran. Informasi ini penting untuk memastikan bahwa setiap pengguna dapat mengakses fitur sistem sesuai dengan tanggung jawab dan kebutuhan mereka.

• Identifikasi Pengguna Sebutkan jenis-jenis pengguna sistem yang ada, berdasarkan peran atau fungsi mereka dalam organisasi. Jelaskan profil pengguna, seperti tingkat keahlian teknis, frekuensi

penggunaan sistem, atau kebutuhan mereka terkait sistem.

• Peran dan Tanggung Jawab (Role)
Uraikan peran masing-masing pengguna dalam sistem, termasuk tugas utama mereka.

Gunakan istilah yang mudah dipahami untuk mendeskripsikan peran, seperti

"Administrator", "Analyst", atau "Operator".

• Hak Akses dan Izin (Permission)

Jelaskan hak akses yang diberikan kepada masing-masing peran. Deskripsikan fitur
atau modul sistem yang dapat diakses oleh pengguna tertentu, serta batasan yang
diterapkan untuk menjaga keamanan dan integritas data.

Contoh:

Tabel 3.1 Karakteristik pengguna

NO	Pengguna	Pekerjaan	Hak Akses	
1.	Teknisi	Aktor pengguna untuk	mendapatkan akses root agar dapat	
		melakukan konfigurasi	mengkonfigursi layanan pada sistem	
		terhadap sistem operasi linux	operasi linux jika terjadi kesalahan.	
		jika terjadi kesalahan pada		
		layanan atau sistem.		
2.	Administrator	Aktor yang melakukan	Melakukan monitoring log,	
		monitoring serangan	Melakukan monitoring dashboard,	
		Slow DoS/DRDoS	Menerima alert	

1. Description of User: Pelaku

Role: Teknisi

Prerequisite: Teknisi memerlukan akses root

Task description : Melakukan konfigurasi layanan dan sistem jika terjadi kesalahan

Target Sistem

Jelaskan kondisi system existing seperti apa, lalu jelaskan target dari system yang dibuat, lebih baik jika dilengkapi dengan metric (service time) yang akan di optimalkan.

Contoh:

Target service time pada projek Luna System yang sedang dikembangkan yaitu system monitoring yang dapat mengidentifikasi serangan Denial of Service/Distributed Denial of Service (Slow DoS/DRDoS) di Ditreskrimsus Polda Jateng yaitu:

- 1. Terbuatnya sistem untuk mendeteksi serangan Slow DoS/DRDoS yang sebelumnya belum ada pada Ditreskrimsus Polda Jateng.
- 2. Hasil deteksi serangan Slow DoS/DRDoS ke dashboard sistem dapat dilakukan dalam waktu kurang dari 10 detik dari waktu inisial serangan terjadi.
- 3. Dashboard sistem dapat memonitor log serangan Slow DoS/DRDoS secara real-time.
- 4. Dapat memberikan notifikasi serangan yang terjadi ke administrator secara real-time.

Kebutuhan Antarmuka Sistem

Merujuk pada deskripsi detail tentang bagaimana sistem akan berinteraksi dengan perangkat keras (hardware) dan perangkat lunak (software) lainnya. Bagian ini penting untuk memastikan bahwa sistem dapat diintegrasikan dengan lancar ke dalam lingkungan operasional yang ada.

Antarmuka Perangkat Keras

Pada sistem deteksi serangan Slow DoS/DRDoS dari Luna System yang diajukan, proses pengembang telah dirancang dengan mempertimbangkan beberapa aspek antarmuka perangkat keras yang diperlukan untuk memfasilitasi interaksi pengguna dengan sistem. Daftar beberapa hardware interface yang telah dipertimbangkan dalam perancangan sistem ini dijelaskan dalam Tabel dibawah

Tabel 3. Antarmuka Perangkat Keras

No	Antarmuka Pengguna	Fungsi
1.	Keyboard	Antarmuka keyboard digunakan untuk memasukkan data ke dalam
		sistem.
2.	Mouse	Antarmuka mouse digunakan untuk memindahkan objek dari satu
		tempat ke tempat lain.
3.	Monitor	Antarmuka monitor digunakan untuk melihat tampilan dari sistem
		informasi.

Antarmuka Perangkat Lunak

Fokus pada kebutuhan yang berkaitan dengan interaksi antar perangkat lunak, library, atau database yang digunakan untuk pertukaran data antara aplikasi atau modul dalam sistem.

Contoh:

- 1. API RESTful untuk mengakses data log.
- 2. Integrasi dengan database (misalnya MySQL, Elasticsearch).
- 3. Kompatibilitas dengan system operasi tertentu (Linux, Windows).
- 4. Format data yang digunakan (JSON, XML).

Antarmuka Komunikasi

Fokus pada kebutuhan komunikasi di tingkat jaringan, seperti protokol, bandwidth, dan keamanan dalam pertukaran data antar perangkat atau sistem melalui jaringan.

Contoh:

- 1. Protokol komunikasi yang digunakan, seperti HTTP, HTTPS, MQTT, atau WebSocket.
- 2. Keamanan komunikasi, seperti penggunaan TLS/SSL untuk enkripsi.
- 3. Kebutuhan bandwidth untuk mengelola volume data yang besar (misalnya, 1.000 log/detik).
- 4. Konektivitas antar perangkat melalui jaringan lokal (LAN) atau internet.

Kebutuhan Integrasi dengan Sistem Lain (Opsional)

Merujuk pada kemampuan sistem yang sedang dikembangkan untuk berinteraksi, berbagi data, atau bekerja sama dengan sistem atau perangkat lain dalam sebuah ekosistem teknologi. Tujuannya adalah memastikan interoperabilitas dan efisiensi dalam mencapai tujuan fungsional dan operasional.

Contoh:

Dalam konteks Sistem Monitoring dan Deteksi Serangan Slow DoS/DRDoS Berbasiskan Ensemble Learning:

- 1. Integrasi dengan Sistem SIEM:
 - Sistem harus dapat mengirimkan data deteksi serangan ke platform SIEM (misalnya, Splunk atau QRadar) untuk korelasi dan pelaporan yang lebih luas.
- 2. Integrasi dengan Firewall atau IDS/IPS:
 - Sistem dapat mengirimkan perintah mitigasi serangan ke perangkat firewall untuk memblokir alamat IP yang mencurigakan.
- 3. Integrasi dengan Dashboard atau Platform Monitoring:
 - Hasil analisis dari sistem harus dapat diakses oleh pengguna melalui dashboard pihak ketiga, seperti Grafana atau Kibana.
- 4. Integrasi dengan Sistem Notifikasi:
 - o Sistem perlu mengirimkan peringatan ke email gateway, SMS gateway, atau aplikasi pesan instan (misalnya, Slack atau WhatsApp).
- 5. Integrasi dengan Database:
 - Sistem menyimpan data log dan analisis di database yang ada, seperti Elasticsearch, MongoDB, atau PostgreSQL.

Template dan Dokumen C300

Topik Capstone	Topik Capstone			
Siklus / Tahun	*Gasal atau Genap / (tahun)			
Judul Dokumen	Capstone TA			
	Judul Capstone Proyek kelomp	ok		
Jenis Dokumen	PERANCANGAN PRODUK			
	Catatan: Penggunaan dan penyebaran dokumen ini dikendalikan oleh			
	Departemen Teknik Komputer Universitas Diponegoro			
Nomor Dokumen	C300.[NoRev]TA[tahun].[1/2].[KodeKelompok]			
Nomor Revisi	NoRev	NoRev		
Nama File	Kode Kelompok.pdf			
Tanggal Penerbitan	Tanggal Penerbitan			
Unit Penerbit	Departemen Teknik Komputer Universitas Diponegoro			
Jumlah Halaman	Jumlah Halaman Tidak termasuk sampul			

		Data Pengusul		
Pengusul	Nama NIM	Jabatan	Anggota	
	Tanggal	Tanda Tangan		
	Nama NIM	Jabatan	Anggota	
	Tanggal	Tanda Tangan		
	Nama NIM	Jabatan	Anggota	
	Tanggal	Tanda Tangan		
Pembimbing 1 (Utama)	Nama	Tanda Tangan		
	NIP.			
	Tanggal			
Pembimbing 2	Nama	Tanda Tangan		
	NIP. Tanggal			

Versi, Tanggal, Oleh	Perbaikan		

Daftar Isi

1. Pen	dahuluandahuluan	59
1.1.	Ringkasan isi dokumen	59
1.2.	Aplikasi Dokumen	59
1.3.	Referensi	59
1.4.	Daftar Singkatan	59
2. Des	sain Produk yang Diusulkan	
2.1.	Arsitektur Sistem	60
2.2.	Desain Detail Sistem	61
2.2.	1. Data description	61
2.2.	2. Class Diagram/Sequence Diagram atau diagram yang sesuai	62
2.2.	3. Standar-standar yang dipergunakan	64
2.2.	4. Method/API	65
2.2.	5. Kecerdasan Buatan	66
2.2.	6. Perancangan Alat	67
3. Ver	rifikasi Desain Produk	68
3.1.	Prototipe, atau	68
3.2.	Hasil Simulasi Awal Produk	68

5. Pendahuluan

5.1. Ringkasan isi dokumen

Isi Ringkasan Dokumen

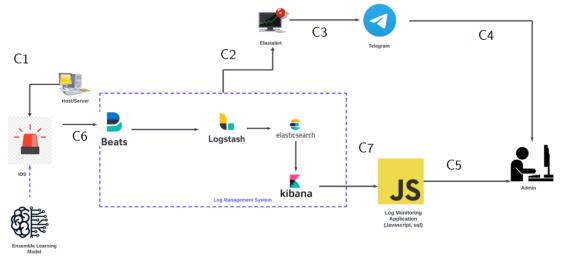
5.2. Aplikasi Dokumen

Dokumen ini berlaku berfungsi untuk menjelaskan:

- 1) Proses pemilihan desain alat dari beberapa alternatif yang ada.
- 2) Detail desain alat dari level tertinggi sampai terendah
- 3) Menjelaskan standar-standar yang dipergunakan
- 4) Refensi komponen/library yang digunakan
- 5) Verifikasi bahwa hasil rancangan dapat diaplikasikan
- 6) Rencana implementasi dan pengujian

5.3. Referensi

5.4. Daftar Singkatan


6. Desain Produk yang Diusulkan

6.1. Arsitektur Sistem

Jelaskan arsitektur dari sistem yang diusulkan, yang menunjukkan hubungan antar komponen utama.

Contoh:

Sistem yang kami usulkan yaitu LunaSystem: Sistem Monitoring dan Deteksi Serangan Slow DoS/DRDoS Berbasiskan Ensemble Learning menggunakan ELK Stack. Sistem monitoring ini memiliki fungsi utama, yaitu untuk mendeteksi beberapa jenis serangan Slow DoS/DRDoS. Dapat dilihat pada Gambar 3.1. bahwa arsitektur Luna System menggunakan beberapa perangkat lunak Elasticsearch, Logstash, dan Kibana (ELK Stack) untuk membantu keefektifan sistem melakukan monitoring dan mendeteksi serangan Slow DoS/DRDoS. Setiap perangkat lunak memiliki fungsinya masing-masing dalam pembangunan sistem ini.

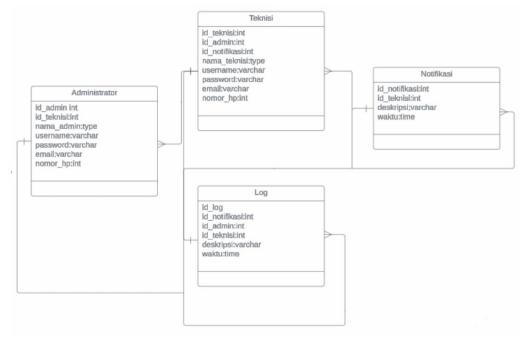
Gambar 3.1. Arsitektur Luna System

Berikut cara kerja LunaSystem : Sistem Monitoring dan Deteksi Serangan Slow DoS/DRDoS Berbasiskan *Ensemble Learning* menggunakan ELK Stack:

- 1. TCPdump melakukan penangkapan trafik jaringan pada host/server kemudian menyimpannya dalam berkas pcap
- 2. Berkas pcap diubah ke berkas csv
- 3. Dilakukan ekstraksi fitur terhadap berkas pcap yang sudah diubah ke bentuk berkas csv berdasarkan format dari dataset yang digunakan.
- 4. Dilakukan prediksi menggunakan model pembelajaran ensemble yang sudah dikembangkan dan hasil prediksi disimpan dengan nama log.csv
- 5. Hasil prediksi dikirimkan oleh filebeat ke elasticsearch
- 6. Dibuatkan dashboard pada kibana berdasarkan hasil prediksi yang diperoleh
- 7. Dashboard pada kibana disimpan pada log monitoring application dengan menggunakan iframe
- 8. ElastAlert mengirimkan notifikasi telegram apabila serangan Slow DoS/DRDoS terjadi. Identifikasikan juga bagaimana komunikasi antar komponen.

Contoh:

Kode	Komponen Pengirim	Komponen Penerima	Media Transmisi	Metode Transmisi Data
C1	Server	IDS	4G	HTTP Post
	•••			•••
С3	Gateway	Server cloud	4G	HTTP Post
C6	Server Cloud	Client Browser	Internet	API


6.2. Desain Detail Sistem

Jika ada jelaskan tentang poin-poin berikut:

6.2.1. Data description

Jelaskan Physical Data Model dan tabel-tabel dalam database beserta definisi domain/tipe data dan struktur tabel. Tunjukkan hubungan tabel-tabel dalam database dengan desain ER yang telah dibuat.

Contoh:

Gambar 3.1. Entity Relationship Diagram

Struktur tabel yang digunakan dalam basis data Luna *System* dijelaskan pada Tabel 3.2 hingga Tabel 3.3. *Dataset* yang digunakan dijelaskan pada Tabel 3.4 hingga Tabel 3.5.

Tabel 3.2 Struktur Tabel *Users*

Kolom	Tipe Data (Panjang Data)	Bawaan	Keterangan
id	bigint(20)		Primary Key, Auto Increament
nama	VARCHAR		
password	VARCHAR	NULL	

Kolom	Tipe Data (Panjang Data)	Bawaan	Keterangan
created_at	datetime	NOW0	
updated_at	datetime	NOW0	

Tabel 3.3 user_activities

Kolom	Tipe Data (Panjang Data)	Bawaan	Keterangan
id	A. bigint(20)		Primary Key, Auto Increament
src_ip	VARCHAR		
src_port	VARCHAR		
dst_ip	VARCHAR		
dst_port	VARCHAR		
result	text		
category	text		

Hubungan tabel-tabel dalam basis data dengan desain ERD yang telah dibuat dapat dilihat pada Tabel 3.4.

Tabel 3.4 Tabel Traceable Data

Nama Tabel	Primary Key	Entity Class	ER	Deskripsi Isi
users	id	User	Need	Berisi daftar data pengguna.
user_activities	id	UserActivity	Need	Berisi daftar rekam jejak aktivitas pengguna dalam sistem.

6.2.2. Class Diagram/Sequence Diagram atau diagram yang sesuai

Buat diagram-diagram yang diperlukan untuk menjelaskan sistem yang dibuat, misal class/sequence diagram, state diagram, flow chart, dsb).

Contoh:

Gambar 3.2 menggambarkan struktur sistem dan hubungan antara komponen-komponen utama dalam lunasystem. Berikut merupakan penjelasan komponen-komponen utama dari lunasystem:

1. TCPdump

Fungsi:

- Alat untuk menangkap paket data dari jaringan.

Metode Utama:

- capture(): Menangkap paket data yang melintas di jaringan.
- saveasPCAP(): Menyimpan paket data yang ditangkap dalam format file PCAP.

Hubungan:

- Menghasilkan file PCAP yang akan digunakan oleh komponen berikutnya dalam sistem.

2. CICFlowMeter

Fungsi:

- Alat untuk mengkonversi file PCAP menjadi file CSV.

Metode Utama:

- convertToCSV(): Mengubah file PCAP menjadi file CSV dengan fitur-fitur alur data.

Hubungan:

- Menerima file PCAP dari TCPDUMP dan menghasilkan file CSV

3. luna.service

Fungsi:

- Layanan yang memantau dan menganalisis file CSV.

Metode Utama:

- monitorCSV(): Memantau file CSV untuk deteksi file baru.
- predict(): Melakukan prediksi terhadap data dalam file CSV.
- saveLog(): Menyimpan hasil prediksi dalam file log.csv.

Hubungan:

- Memantau file CSV yang dihasilkan CICFlowMeter dan menghasilkan file log.csv dengan hasil prediksi.

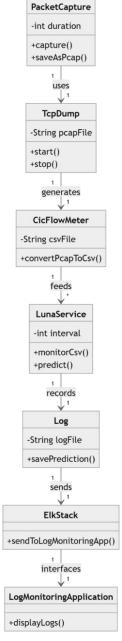
4. ELK Stack

Fungsi:

- Sistem yang mengumpulkan, menyimpan, dan memproses data log.

Hubungan:

- Menerima file log.csv dari luna.service dan memprosesnya sebelum mengirimkan data ke aplikasi pemantauan log.


5. Log Monitoring Application

Fungsi:

- Aplikasi yang menampilkan data log yang telah diproses oleh ELK Stack.

Hubungan:

Menerima data dari ELK Stack dan menampilkan informasi hasil prediksi kepada pengguna.

Gambar 3.2 Class Diagram LunaSystem

6.2.3. Standar-standar yang dipergunakan

Jelaskan standar yang dipergunakan, misal protokol komunikasi data, sistem security, dsb.

Contoh:

Dalam implementasinya, Luna System menggunakan berbagai macam standar untuk bekerja. Standar-standar tersebut adalah:

- a. C1: Koneksi HTTP (Hypertext Transfer Protocol) dari Klien ke Server untuk menginisiasi permintaan dan menerima respons.
- b. C2: Koneksi HTTPS (Hypertext Transfer Protocol Secure) dari Server ke Filebeat untuk transmisi data log yang aman.

- c. C3: Koneksi Filebeat dari Filebeat ke Logstash untuk mengirim data log.
- d. C4: Koneksi Logstash dari Logstash ke Elasticsearch untuk melakukan parsing dan pengindeksan data log.
- e. C5: Koneksi Elasticsearch dari Elasticsearch ke Kibana untuk visualisasi data.
- f. C6: Koneksi Elasticsearch dari Elasticsearch ke Elastalert untuk deteksi anomali.
- g. C7: Notifikasi yang dikirim dari Elastalert ke Pengguna ketika anomali terdeteksi.

6.2.4. Method/API

Jika ada, jelaskan secara detail proses CRUD dan data Query, termasuk yang berhubungan dengan komunikasi antar komponen di Section 3.1 (kode komunikasi C3, C6). Termasuk konfigurasi server bila ada (misal load balancing, dsb).

Contoh:

Luna System memiliki beberapa *method* yang dibuat untuk memenuhi kebutuhan fungsional sistem yang dapat dilihat pada Tabel 3.6.

Tabel 3.6 Deskripsi Method/API

SRS-Id	Nama Method	Keterangan			
LUNA-01	capture()	Script melakukan penangkapan paket data yang melintas di jaringan			
LUNA-02	saveasPCAP()	Script menyimpan paket data yang ditangkap dalam format file PCAP			
LUNA-03	convertToCSV()	Script mengubah file PCAP menjadi file CSV dengan fitur-fitur alur data			
LUNA-04	monitorCSV()	Script memantau file CSV untuk deteksi file baru.			
LUNA-05	predict()	Script melakukan prediksi terhadap data dalam file CSV			
LUNA-06	saveLog()	Berfungsi untuk menyimpan hasil prediksi dalam file log.csv			
LUNA-07	login()	Admin melakukan autentikasi ke dalam sistem.			
LUNA-08	getDashboard()	Admin mendapatkan data ringkasan yang ditampilkan dalam bentuk grafik dan data tabular pada halaman dashboard.			
LUNA-09	getAlert()	Admin mendapatkan peringatan melalui aplikasi telegram			
LUNA-10	logout()	Admin mengakhiri sesi <i>login</i> admin yang aktif, sehingga memastikan admin keluar dari sistem dengan aman			

6.2.5. Kecerdasan Buatan

Apabila terdapat implementasi kecerdasan buatan, tuliskan secara spesifik algoritma apa saja yang akan dijadikan perbandingan untuk pada akhirnya diimplementasikan di sistem. Jelaskan secara spesifik *hyperparameter* apa saja yang akan digunakan. Apabila algoritma berbasis pembelajaran (machine learning atau deep learning), jelaskan data yang digunakan untuk melakukan *training*, *validation*, dan *testing*.

Contoh:

A. Data Pelatihan

Berikut adalah daftar dataset yang digunakan dalam implementasi sistem. Tabel 3.4 berisi dataset CIC-IDS2017 dan 2018, sedangkan Tabel 3.5 berisi deskripsi 2019.

Tabel 3.4 Dataset CIC-IDS2017 dan CSE-CIC-IDS2018

Jenis Serangan	Jumlah
Benign	1,596,744
DoS attacks-Slowloris	15,293
DoS attacks-Slowhttptest	5,283

Tabel 3.5 Deskripsi Dataset CIC-DDoS2019

Jenis DRDoS	Jumlah
DRDoS DNS	108,119
DRDoS LDAP	28,871
DRDoS MSSQL	193,346
DRDoS NetBIOS	17,925
DRDoS NTP	111,269
DRDoS SNMP	112,061
DRDoS SSDP	890,292

B. Model

Untuk implementasi model pembelajaran mesin berbasis ensemble, kami menggunakan metode Random Forest. Random Forest adalah salah satu metode ensemble yang populer dan efektif, yang mengkombinasikan hasil dari beberapa pohon keputusan (decision trees) untuk meningkatkan akurasi dan mengurangi overfitting.

Parameter Model

Berikut adalah parameter-parameter yang digunakan dalam model Random Forest:

- a. **n_estimators**: Jumlah pohon keputusan dalam hutan. Pada penelitian ini, kami menggunakan 100 pohon untuk mendapatkan keseimbangan antara kinerja dan waktu komputasi.
- b. **max_depth**: Kedalaman maksimum pohon keputusan. Kami membatasi kedalaman pohon pada 10 untuk mencegah overfitting.
- c. **min_samples_split**: Jumlah minimum sampel yang dibutuhkan untuk memisahkan suatu node. Nilai yang digunakan adalah 2.
- d. **min_samples_leaf**: Jumlah minimum sampel yang dibutuhkan pada setiap daun pohon. Nilai yang digunakan adalah 1.
- e. **criterion**: Fungsi yang digunakan untuk mengukur kualitas pemisahan. Kami menggunakan "gini" untuk indeks Gini.
- f. **bootstrap**: Apakah akan menggunakan bootstrap samples saat membangun pohon. Kami menggunakan nilai True.

6.2.6. Perancangan Alat

Dalam bagian ini, jelaskan secara detail desain dan pengujian perangkat keras yang digunakan dalam proyek.

B. Diagram Perangkat Keras

Buat diagram yang menunjukkan komponen-komponen utama dalam sistem perangkat keras, termasuk hubungan antar komponen. Diagram-diagram yang bisa disertakan antara lain:

- a. Diagram Blok: Menunjukkan fungsi utama dari setiap komponen dan bagaimana mereka terhubung satu sama lain.
- b. Diagram Skematik: Diagram yang lebih rinci yang menunjukkan semua koneksi listrik antara komponen.
- c. Diagram PCB (Printed Circuit Board): Diagram layout fisik dari komponen pada papan sirkuit.

C. Deskripsi Komponen

Deskripsikan setiap komponen yang digunakan dalam sistem, termasuk spesifikasi teknis dan peran mereka dalam sistem. Contoh:

- a. Mikrokontroler: Spesifikasi teknis dan fungsi dalam sistem.
- b. Sensor: Jenis sensor, data yang diukur, dan cara kerja.
- c. Aktuator: Jenis aktuator dan fungsinya dalam sistem.

D. Pengujian Perangkat Keras

Jelaskan metode pengujian perangkat keras yang akan dilakukan untuk memastikan sistem bekerja sesuai dengan spesifikasi. Ini dapat mencakup:

- a. Pengujian Fungsional: Menguji apakah setiap komponen bekerja sesuai dengan yang diharapkan.
- b. Pengujian Integrasi: Menguji bagaimana komponen bekerja bersama sebagai sebuah sistem.
- c. Pengujian Kinerja: Mengukur kinerja sistem dalam kondisi operasi yang berbeda.

E. Prosedur Kalibrasi

Jelaskan prosedur kalibrasi yang diperlukan untuk memastikan akurasi dan konsistensi data yang dihasilkan oleh sistem.

7. Verifikasi Desain Produk

Pilih yang digunakan dalam pengembangan produk:

7.1. Prototipe, atau

7.2. Hasil Simulasi Awal Produk

Boleh dalam bentuk referensi, simulator atau pengujian modular. Tunjukkan hasil simulasi awal desain produk yang dikembangkan. Contoh, keberhasilan pengiriman data dari mobile phone ke server di cloud, simulator packet tracer, simulasi di matlab, dll.

8. Rencana Implementasi dan Pengujian

8.1. Gaant Chart

Harus menggunakan Software Project Libre untuk menunjukkan gambaran detil tahapan implementasi dan pengujian yang akan dilakukan. Gantt Chart harus mencakup:

- a. Fase Perencanaan: Menentukan tujuan dan cakupan proyek, pemilihan alat dan teknologi, dan pembuatan jadwal kerja.
- b. Fase Desain: Desain sistem secara rinci, pembuatan diagram perangkat keras dan perangkat lunak, serta persiapan data untuk pengujian.
- c. Fase Implementasi: Konstruksi, integrasi komponen, dan pengujian unit.
- d. Fase Pengujian: Pengujian sistem secara keseluruhan, validasi hasil pengujian, dan perbaikan bug.
- e. Fase Peluncuran: Implementasi akhir, pelatihan pengguna, dan evaluasi proyek.

Contoh:

Catatan: Contoh ini harus dikembangkan lagi supaya mencakup dependensi antar sistem yang dikembangan serta kapan komponen tersebut dikerjakan.

Tabel 5. 1 Gantt Chart jadwal pengerjaan

Name	Duration	Start	Finish	P 1 25 19 Jan 25 26 Jan 25 2 Feb 25 9 Feb 25
Pengembangan API	20 days?	1/17/25 8:00 AM	2/13/25 5:00 PM	
Desain struktur API	5 days?	1/17/25 8:00 AM	1/23/25 5:00 PM	
Desain POST and GET	5 days?	1/24/25 8:00 AM	1/30/25 5:00 PM	
Desain interface logstash	5 days?	1/31/25 8:00 AM	2/6/25 5:00 PM	
Pengujian API	5 days?	2/7/25 8:00 AM	2/13/25 5:00 PM	
Pengembangan Deteksi	15 days?	1/17/25 8:00 AM	2/6/25 5:00 PM	
Learning model deteksi DD0	5 days?	1/17/25 8:00 AM	1/23/25 5:00 PM	
Pengujian dan refinement r	5 days?	1/24/25 8:00 AM	1/30/25 5:00 PM	
Pemasangan model ke log r	5 days?	1/31/25 8:00 AM	2/6/25 5:00 PM	

8.2. Tujuan Pengujian

8.3. Lingkup Pengujian

Lingkup pengujian mencakup semua aspek dari sistem yang dikembangkan, termasuk perangkat keras dan perangkat lunak.

8.4. Metode Pengujian

Menunjukkan metode pengujian yang akan digunakan ketika produk jadi.

Contoh:

Metode pengujian yang akan digunakan ketika produk jadi meliputi:

a. Pengujian Unit:

Pengujian individual untuk setiap komponen, seperti memastikan Filebeat dapat mengirim data log dengan benar, Logstash dapat mem-parsing data dengan benar, dan Kibana dapat menampilkan visualisasi data yang benar.

b. Pengujian Integrasi:

Menguji bagaimana komponen-komponen seperti Filebeat, Logstash, Elasticsearch, Kibana, dan Elastalert bekerja bersama sebagai sebuah sistem. Contoh: Memastikan Filebeat dapat mengirim data log ke Logstash, Logstash dapat mem-parsing data dan mengirimkannya ke Elasticsearch, dan data tersebut dapat divisualisasikan di Kibana.

c. Pengujian Sistem:

Menguji sistem secara keseluruhan untuk memastikan bahwa semua fungsi bekerja sesuai dengan persyaratan. Contoh: Memastikan sistem mampu mendeteksi dan memberikan notifikasi ketika terdeteksi ancaman DoS/DDoS.

d. Pengujian Kinerja:

Menguji kinerja sistem di bawah berbagai kondisi operasi, termasuk beban tinggi. Contoh: Memastikan sistem tetap responsif ketika menerima volume log yang tinggi selama serangan DoS/DDoS.

e. Pengujian Keamanan:

Mengidentifikasi dan memperbaiki kerentanan keamanan dalam sistem. Contoh: Memastikan data yang ditransmisikan melalui HTTPS (C2) aman dan tidak dapat disadap.

f. Pengujian Kompatibilitas:

Menguji kompatibilitas sistem dengan perangkat dan lingkungan lain. Contoh: Memastikan sistem dapat beroperasi dengan baik pada berbagai server.

8.5. Kriteria Pengujian

Kriteria pengujian digunakan untuk menentukan apakah sistem telah lulus pengujian atau tidak.

a. Fungsi:

Sistem harus memenuhi semua persyaratan fungsional yang telah ditetapkan. Contoh: Sistem mampu mendeteksi dan memberikan notifikasi ancaman DoS/DDoS.

b. Kinerja:

Sistem harus mencapai kinerja yang diharapkan dalam hal kecepatan, responsivitas, dan efisiensi. Contoh: Sistem tetap responsif di bawah beban log yang tinggi.

c. Keamanan:

Sistem harus bebas dari kerentanan yang dapat dieksploitasi. Contoh: Data yang ditransmisikan menggunakan HTTPS harus aman dari penyadapan.

d. Keandalan:

Sistem harus bekerja dengan stabil tanpa kesalahan atau gangguan selama periode pengujian. Contoh: Sistem tidak mengalami downtime selama pengujian intensif.

Topik Capstone	Topik Capstone		
Siklus / Tahun	Gasal atau Genap / (tahun)		
Judul Dokumen	Capstone TA		
	Judul Capstone Proyek kelompok		
Jenis Dokumen	IMPLEMENTASI PRODUK		
	Catatan: Penggunaan dan penyebaran dokumen ini		
	dikendalikan oleh Departemen Teknik Komputer Universitas		
	Diponegoro		
Nomor Dokumen	C400.[NoRev]TA[tahun].[1/2].[KodeKelompok]		
Nomor Revisi	NoRev		
Nama File	KodeKelompok.doc		
Tanggal Penerbitan	Tanggal Penerbitan		
Unit Penerbit	Departemen Teknik Komputer Universitas Diponegoro		
Jumlah Halaman	Jumlah Halaman	Tidak termasuk sampul	

		Data Pengusul		
Pengusul	Nama NIM		Jabatan	Anggota
	Tanggal		Tanda Tangan	
	Nama NIM		Jabatan	Anggota
	Tanggal		Tanda Tangan	
	Nama NIM		Jabatan	Anggota
	Tanggal		Tanda Tangan	
Pembimbing 1 Nama (Utama)			Tanda Tangan	
	Tanggal	NIP.		
Pembimbing 2	Nama		Tanda Tangan	
	Tanggal	NIP.		

Versi, Tanggal, Oleh	Perbaikan

Daftar Isi

<u>1.</u> <u>Per</u>	<u>ndahuluan</u>	75
<u>1.1.</u>	Ringkasan isi dokumen	75
<u>1.2.</u>	Aplikasi Dokumen	75
<u>1.3.</u>	Referensi	75
<u>1.4.</u>	Daftar Singkatan	75
<u>2.</u> <u>Im</u>	<u>plementasi</u>	75
<u>2.1.</u>	Implementasi Produk	75
<u>2.2.</u>	Tampilan Produk	82
<u>2.3.</u>	Demonstrasi Produk	86
2.4.	Kesimpulan Realisasi Desain Produk dengan Implementasi Produk	86

9. Pendahuluan

9.1. Ringkasan isi dokumen

Isi Ringkasan Dokumen

9.2. Aplikasi Dokumen

Dokumen ini berlaku berfungsi untuk menjelaskan:

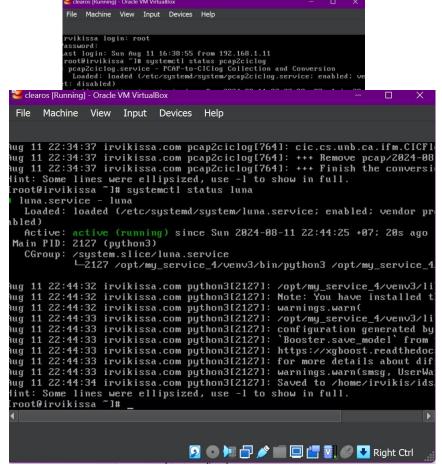
- 7) Tahap implementasi dari rancangan pada Dokumen C300
- 8) Acuan tahap pengujian pada dokumen selanjutnya
- 9) Catatan proses pengerjaan dan revisi yang sedang berlangsung
- 9.3. Referensi
- 9.4. Daftar Singkatan

10. Implementasi

10.1. Implementasi Produk

Jelaskan dengan singkat gambaran implementasi produk yang dibuat.

Contoh:


Implementasi LunaSystem Sistem *Monitoring* dan Deteksi Serangan Slow DoS/DRDoS Berbasiskan *Ensemble Learning* menggunakan ELK Stack pada Ditreskrimsus Polda Jateng Semarang dilakukan dengan pembuatan sistem yang dibagi berdasarkan 2 bagian, yaitu pembuatan model ensemble dengan menggunakan dataset CIC-IDS2017, CICCSEIDS2018, dan CICDDOS2019 setelah itu dilanjut dengan pembuatan *Log Management System* yang terintegrasi dengan *Web Application*.

Pembuatan model ensemble dibagi menjadi beberapa tahap yaitu, tahap *preprocessing data*, tahap *feature engineering*, dan yang terakhir adalah tahap pelatihan dan pengujian. Tahap *preprocessing* adalah langkah yang paling awal dilakukan, data mentah yang diambil dari dataset diubah dilakukan beberapa langkah, seperti menghapus data *redundant* yang tidak perlu dan menormalisasi data, sehingga data tersebut siap digunakan untuk dilatih dan diuji. Tahap berikutnya yaitu melakukan *feature engineering*. Pada tahap ini dilakukan dua tahap *feature engineering* yaitu melakukan *feature selection* dengan menggunakan *information gain* dan *Fast Correlation Base Filter*. Feature selection dengan menggunakan information gain adalah metode

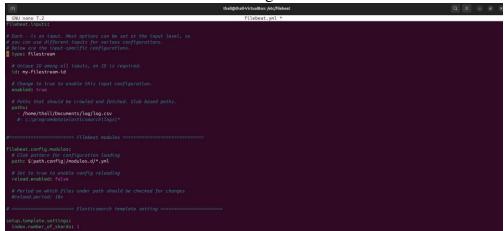
untuk memilih fitur-fitur yang paling relevan dalam dataset berdasarkan seberapa baik fitur-fitur tersebut memisahkan data ke dalam kategori-kategori yang berbeda. Fast Correlation-Based Filter (FCBF) adalah metode feature selection yang efisien untuk memilih fitur-fitur paling relevan dari dataset. FCBF mengurangi redundansi dengan mempertahankan hanya fitur-fitur yang memiliki korelasi signifikan dengan target (label) yang ingin diprediksi. FCBF menghitung C-correlation (korelasi antara fitur dan kelas) dan F-correlation (korelasi antara dua fitur), kemudian menyaring fitur-fitur yang C-correlation-nya kurang dari ambang batas yang telah ditentukan dan menghapus fitur-fitur redundant dengan menggunakan Markov blanket yang telah diidentifikasi[1]. Masuk ke tahap pelatihan dan pengujian. Pada tahap ini dataset dibagi menjadi 70 persen untuk data latih dan 30 persen untuk data uji. Hasil atau model dari tahap pelatihan kemudian disimpan dalam bentuk joblib. Model ini akan digunakan untuk memprediksi trafik secara real time.

Gambar 2.1. Service pcap2ciclog

Gambar 2.1. menunjukkan sebuah *service* pcap2ciclog yang berguna untuk melakukan penangkapan trafik menggunakan TCPDump. *Service* tersebut akan berjalan selama t detik,

kemudian menyimpan trafik tersebut dalam bentuk berkas .pcap. Service tersebut juga akan mengkonversi berkas pcap yang sudah dihasilkan ke bentuk berkas csv berdasarkan format dataset

Gambar 2.2. Service Luna


Setelah berkas pcap berhasil dikonversi ke bentuk csv, berkas csv yang berisi trafik tersebut akan dilakukan data *preprocessing* dan *feature engineering* oleh *service Luna*, sama halnya seperti yang dilakukan pada tahap pembuatan model. Setelah itu *service Luna* akan melakukan prediksi terhadap trafik tersebut. Hasil prediksi akan menghasilkan berkas berbentuk csv dengan nama log.csv.

Konfigurasi Filebeat untuk memantau *log* dari *file* CSV yang berisi data Slow DoS dan mengirimkannya ke Logstash. Ini memungkinkan data yang relevan untuk dianalisis lebih lanjut atau diproses oleh sistem lain dalam infrastruktur.

Lakukan instalasi pada *server* yang akan dipantau, dan persiapkan *file* CSV yang berisi data DoS yang akan dimonitor. Selanjutnya melakukan konfigurasi pada *File* filebeat, lakukan konfigurasi pada *file* filebeat.yml. Di dalam filebeat.yml masukkan konfigurasi yang diperlukan seperti melakukan *setting paths* agar memungkinkan *user* untuk menentukan sumber data *log* yang akan dipantau dengan fleksibilitas, sehingga memastikan bahwa data *log* yang relevan dapat diakses dan diproses secara efisien oleh sistem pengolahan data. Konfigurasi dilakukan dengan tujuan untuk menentukan *input log* dari *file* CSV.

Setelah selesai melakukan konfigurasi pada Filebeat, simpan *file* konfigurasi dan lakukan *restart* pada layanan Filebeat. Periksa *log* Filebeat untuk memastikan tidak ada kesalahan dan data dari *file* CSV telah dikirimkan ke Elasticsearch dengan sukses.

Gambar 2.3. Konfigurasi Filebeat

Dalam menggunakan Filebeat, kita harus melakukan konfigurasi terlebih dahulu pada beberapa bagian. Agar *log file* dapat terbaca oleh Filebeat, lakukan konfigurasi pada bagian *path* dan sesuaikan dengan lokasi *log file*. Pada bagian *enabled* atur menjadi true agar *input* filebeat dapat terbaca dan bisa dieksekusi oleh sistem.

```
CAU nano 7.2

filebeat.ynl *

# Starting with Beats version 6.8.8, the deshboards are loaded via the Kibana API.

# This requires a kibane endpoint configuration.

# Kibana Nost

# Sobme and part can be left aut and will be set to the default (http and 560!)

# In case you specify and additional path, the scheme is required: http://localhost:560!/path

# IPVs addresses should always be defined as: https://localhost:560!/path

# IPVs addresses should always be defined as: https://localhost:560!/path

# # ID of the Kibana Space into which the dashboards should be loaded. By default,

# the befault Space will be used.

# space.id:

# Company of the space of the which the dashboards should be loaded. By default,

# the logition hosts

hosts: [localboat:5041]

# Optional SSL, By default is off.

# List of root certificates for HTDS server verifications

# ssl.certificate: /e/tc/pki/root/ca.pem*]

# Certificate for SSL client authonication

# ssl.certificate: /e/tc/pki/client/cert.pen*

# Client Certificate * /e/tc/pki/client/cert.pen*

# Client Certificate * /e/tc/pki/client/cert.pen*

# Client Certificate * /e/tc/pki/client/cert.key*

# Concessors:

# Processors ***
```

Gambar 2.4. Konfigurasi Koneksi ke Logstash

Pada gambar tersebut menjelaskan konfigurasi pada filebeat.yml. Konfigurasi *endpoint* Kibana dan *output* Logstash merupakan bagian penting dalam pengaturan sistem *monitoring* dan manajemen *log* menggunakan ELK stack (Elasticsearch, Logstash, dan Kibana). Pada konfigurasi Kibana, *host* Kibana diatur untuk berjalan di 'localhost' pada *port default* '5601', yang menunjukkan bahwa *dashboard* dan antarmuka pengguna Kibana akan diakses melalui http://localhost:5601. ID ruang Kibana tidak diatur, sehingga ruang *default* digunakan untuk mengelompokkan dan mengelola *dashboard* serta visualisasi.

Pada bagian *output* Logstash, *host* Logstash diatur untuk menerima *input* dari 'localhost' pada *port* '5044', memungkinkan Beats seperti Filebeat untuk mengirim data *log* ke Logstash. Konfigurasi ini juga mencakup pengaturan opsional untuk mengaktifkan SSL demi keamanan, dengan opsi untuk menentukan sertifikat otoritas *root*, sertifikat SSL klien, dan kunci sertifikat klien untuk memastikan komunikasi yang aman antara Beats dan Logstash. Selain itu, bagian prosesor mengatur berbagai pemrosesan yang dapat diterapkan pada data sebelum dikirim ke *output*. Prosesor ini berguna untuk memodifikasi, menghapus, atau menambahkan data dalam *log* sesuai kebutuhan, meskipun dalam contoh ini tidak ada pemrosesan spesifik yang diatur. Keseluruhan konfigurasi ini mengarahkan data dari Beats ke Kibana dan Logstash, di mana Kibana digunakan untuk visualisasi data dan Logstash digunakan untuk memproses serta mengirim data ke Elasticsearch untuk penyimpanan lebih lanjut. Pengaturan SSL yang opsional memberikan opsi keamanan tambahan untuk komunikasi antar komponen.

A. Konfigurasi Logstash

Konfigurasi Logstash bertujuan untuk mengonsumsi data yang dikirim dari Elasticsearch dan melakukan pemrosesan data yang sesuai dengan kebutuhan, seperti *parsing*, pengubahan format, atau penyimpanan ke penyimpanan data yang lain. Ini memungkinkan integrasi yang

mulus antara Elasticsearch dan Logstash, memungkinkan aliran data yang lancar dan analisis yang efektif.

Logstash berfungsi sebagai titik tengah dalam arsitektur pengolahan data *log* yang melibatkan Filebeat dan Elasticsearch. Dengan menerima, memproses, dan mengirimkan data *log*, Logstash memainkan peran penting dalam mengelola aliran data dari sumber ke penyimpanan dan analisis. Fungsi utamanya meliputi:

- 1. **Menerima Data** : Logstash menerima data *log* yang dikirim oleh Filebeat.
- 2. **Pemrosesan** : Data *log* diproses menggunakan *filter* yang ditentukan, seperti pemetaan, *parsing*, pengubahan format, atau pengayaan data.
- 3. **Pengiriman** : Data *log* yang telah diproses dikirim ke Elasticsearch untuk penyimpanan dan analisis lebih lanjut.
- 4. **Integrasi** : Logstash menyediakan integrasi yang kuat dengan berbagai sumber data dan penyimpanan, memungkinkan pengolahan data yang fleksibel dan skalabel.

Dengan mengkonfigurasi Logstash untuk memproses data *log*, kita memastikan bahwa data yang dikumpulkan dari berbagai sumber dapat diproses, diperkaya, dan disimpan dengan efisien sebelum disajikan untuk analisis lebih lanjut. Ini membantu dalam pengelolaan aliran data *log* dalam lingkungan yang kompleks dan memfasilitasi pemahaman yang lebih baik tentang sistem dan aplikasi yang dipantau.

Konfigurasi Logstash ini dirancang untuk menerima, memproses, dan mengirim data ke Elasticsearch sambil juga mencetak data tersebut ke stdout untuk keperluan *debugging*. Pada bagian *input*, Logstash dikonfigurasi untuk menerima data dari *plugin* Beats pada *port* 5044. Beats adalah kumpulan pengirim data ringan seperti Filebeat dan Metricbeat yang mengirim data dari berbagai sumber ke Logstash.

Pada bagian *filter*, Logstash memproses data yang diterima dalam format CSV. *Filter* CSV digunakan untuk memisahkan data berdasarkan koma dan memetakan nilai ke kolom yang telah didefinisikan seperti "Dst IP", "Src IP", "Src Port", "Dst Port", dan "Label". Setelah data diproses, bagian *output* mengirim data ke dua tujuan: stdout dan Elasticsearch. *Output* stdout digunakan untuk mencetak data ke konsol dengan format rubydebug yang mudah dibaca untuk tujuan *debugging*. Sementara itu, *output* Elasticsearch mengirim data yang telah diproses ke *instance* Elasticsearch yang berjalan pada *localhost* pada *port* 9200 dan menyimpannya di indeks bernama "sekarangta". Konfigurasi ini memungkinkan data yang diterima dapat dengan mudah dianalisis dan divisualisasikan menggunakan Elasticsearch dan Kibana, memberikan wawasan yang lebih dalam tentang data tersebut.

Gambar 2.5. Konfigurasi Logstash

B. Konfigurasi Elastisearch

Konfigurasi Elasticsearch bertujuan untuk menyimpan data log yang diproses oleh

Logstash dan memfasilitasi penganalisisan data log menggunakan Kibana. Ini membentuk bagian penting dari ELK Stack (Elasticsearch, Logstash, Kibana) yang digunakan untuk pemantauan dan analisis *log*.

Elasticsearch berperan sebagai mesin penyimpanan dan pencarian yang kuat dalam arsitektur ELK Stack. Fungsinya meliputi:

- 1. **Penyimpanan Data**: Elasticsearch menyimpan data *log* yang diproses oleh Logstash dalam bentuk indeks yang terstruktur dan terdistribusi.
- 2. **Pencarian dan Penganalisisan**: Elasticsearch menyediakan API pencarian dan penganalisisan yang kuat untuk melakukan kueri dan analisis data *log* dengan cepat dan efisien.

- 3. **Skalabilitas**: Elasticsearch dirancang untuk skalabilitas horizontal, memungkinkan penambahan *node* dan partisi untuk menangani volume data yang besar.
- 4. **Integrasi dengan Kibana**: Elasticsearch berintegrasi langsung dengan Kibana, memungkinkan visualisasi dan analisis data *log* yang mudah dan intuitif.

Dengan mengkonfigurasi Elasticsearch untuk menyimpan data *log* dan memfasilitasi pencarian dan analisis data, kita menciptakan fondasi yang kuat untuk pemantauan dan analisis *log* yang efektif. Elasticsearch memainkan peran sentral dalam infrastruktur ELK Stack, memungkinkan pengolahan dan pemahaman yang lebih baik tentang data *log* dari berbagai sumber. Dengan analisis yang kuat dan cepat, kita dapat dengan cepat mengidentifikasi masalah, mendiagnosa penyebabnya, dan mengambil tindakan yang sesuai untuk meningkatkan kinerja dan keamanan sistem.

Konfigurasi Elasticsearch dalam *file* elasticsearch.yml mengatur beberapa aspek penting dari *server* Elasticsearch. Pengaturan network.host: 0.0.0.0 menginstruksikan Elasticsearch untuk mendengarkan koneksi pada semua antarmuka jaringan yang tersedia, memungkinkan akses dari semua alamat IP yang terikat pada mesin tersebut. Ini memberikan fleksibilitas untuk menerima koneksi dari berbagai jaringan atau perangkat. Pengaturan http.port: 9200 menetapkan *port* 9200 sebagai *port* di mana Elasticsearch akan mendengarkan koneksi HTTP, yang merupakan *port default* untuk layanan Elasticsearch dan digunakan untuk operasi pencarian, pengindeksan, dan administrasi data. Selanjutnya, discovery.seed_hosts: [] menunjukkan bahwa tidak ada *host seed* yang ditentukan untuk penemuan kluster, yang mungkin berarti *instance* Elasticsearch ini beroperasi sebagai *node* tunggal atau menggunakan metode lain untuk penemuan *node* dalam kluster. Terakhir, http.host: 0.0.0.0 memastikan bahwa Elasticsearch mendengarkan koneksi HTTP pada semua antarmuka jaringan, memberikan aksesibilitas yang luas untuk layanan HTTP-nya.

Meskipun pengaturan ini memberikan fleksibilitas tinggi dan kemudahan akses, terutama dalam lingkungan pengembangan atau pengujian, penting untuk mempertimbangkan langkah-

```
TRUE nano 7.2

# By default Elasticsearch is only accessible on localhost. Set a different

# address here to expose this node on the network:

# metwork.host: 0.0.0.0

http.port: 9200

discovery.seed_hosts: []

xpack.security.enabled: false

xpack.security.enrollment.enabled: true

xpack.security.http.ssl:
 enabled: true

keystore.path: certs/http.p12

# Enable encryption and nutual authentication between cluster nodes

xpack.security.transport.ssl:
 enabled: true

vertication_node: certificate

keystore.path: certs/transport.p12

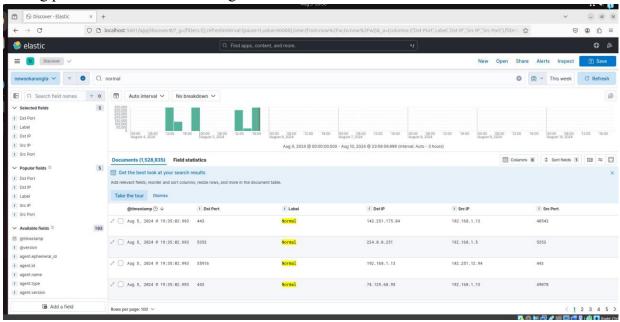
# Create a new cluster with the current node only

# Additional nodes con still join the cluster later

cluster.intial.master_nodes: [* thall-Virtualbox**]

# Allow HITP API connections from anywhere

# Connections are encrypted and require user authentication


http.host: 0.0.0.0
```

langkah keamanan tambahan, seperti konfigurasi Firewall dan penggunaan autentikasi serta enkripsi TLS/SSL, terutama dalam lingkungan produksi, untuk melindungi *instance* Elasticsearch dari akses yang tidak sah.

Gambar 2.6. Konfigurasi Elasticsearch

C. Konfigurasi dan Visualisasi menggunakan Kibana

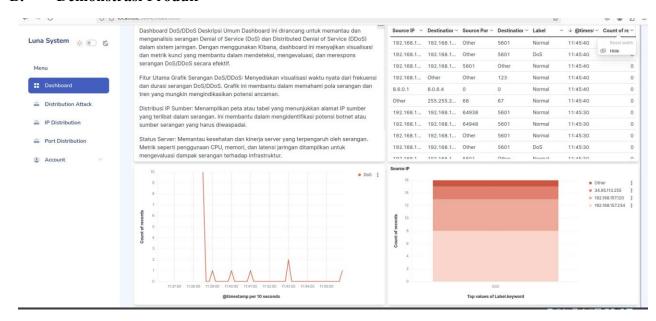
Proses visualisasi *log* serangan Slow DoS di Kibana dalam ELK Stack dimulai dengan menyiapkan data *log* yang telah dikirim dan tersimpan dalam Elasticsearch, dilanjutkan dengan pembuatan *index pattern* di Kibana untuk mengakses data *log* tersebut, kemudian pengguna dapat membuat berbagai jenis visualisasi seperti histogram, grafik batang, atau peta untuk menampilkan informasi penting seperti pola serangan, jumlah serangan per IP sumber, atau distribusi geografis, yang kemudian disusun dalam *dashboard* untuk memungkinkan pemantauan serangan Slow DoS secara *real-time*, sehingga dengan visualisasi ini, pengguna dapat mengidentifikasi tren serangan, memahami dampaknya terhadap sistem, serta mengambil tindakan yang tepat untuk meningkatkan keamanan dan kinerja sistem secara keseluruhan dengan memberikan pemahaman yang lebih baik tentang pola dan karakteristik serangan Slow DoS.

Gambar 2.7. Visualisasi Discover Kibana

10.2. Tampilan Produk

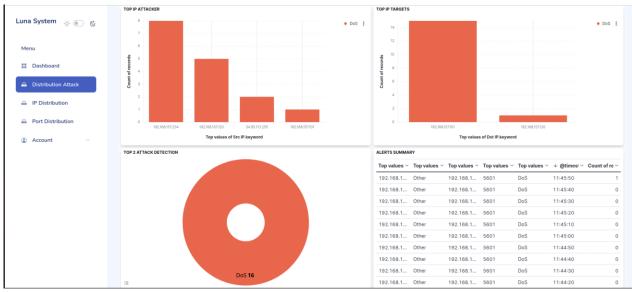
Tampilkan screenshot dari produk yang dibuat untuk masing-masing role/fungsi yang didesain untuk produk tersebut. Tampilan bisa dibuat per fungsi atau per kelompok user. Contoh:

2.2.1 Web Application


A. Halaman Login

Gambar 2.8. Tampilan Login

Gambar 2.8 merupakan tampilan dari masuk atau *login* web *application* Luna System, halaman ini berisikan *text field* dan button *login* untuk masuk pada halaman *admin*. Admini diminta memasukkan *username* dan *password* yang telah tersedia.


B. Demonstrasi Produk

Gambar 2.9. Tampilan Dashboard LunaSystem

Pada gambar 2.9 merupakan tampilan dari *dashboard* setelah sebelumnya *user* melakukan *login* ke dalam sistem. Di dalam menu *Dashboard* terdapat beberapa *chart* dan *table* informasi dari

serangan siber yang terdeteksi. Pada *line chart* terdapat hasil deteksi serangan dalam kurun waktu tiap 10 detik, ini akan membuat perubahan secara *realtime*. Selanjutnya terdapat *table summary* dari hasil serangan siber yang terdeteksi, tabel ini akan berisi berisi *source* IP, *destination* IP, dan label jenis serangan. Kemudian pada *chart Source* IPberfungsi untuk menampilkan IP dari *server* yang mengalami serangan siber.

Gambar 2.10. Tampilan Menu Distribution Attack

Pada gambar 2.10 tersebut, merupakan tampilan dari menu *distribution attack*, dalam menu ini akan terdapat 3 *chart* dan 1 *table*. Pada *chart top* IP *attacker* akan menampilkan total dari IP si penyerang. Selanjutnya terdapat *chart top* IP *targets*, *charts* ini berfungsi untuk menampilkan total dari IP yang menerima serangan dari IP *attacker*. Kemudian terdapat *donut charts*, *donut charts* ini untuk menampilkan total data dari jenis serangan yang telah terdeteksi. Terakhir terdapat *alerts summary*, dimana tabel ini akan menampilkan hasil serangan siber yang terdeteksi, tabel ini akan berisi berisi *source* IP, *destination* IP, dan label jenis serangan.

Gambar 2.11. Tampilan menu IP Distribution

Gambar 2.11 diatas merupakan tampilan menu dari IP *Distribution*, kemudian terdapat *chart* untuk menampilkan IP sumber dari mana serangan berasal. Selain itu juga terdapat *chart* IP *destination*, ini akan menunjukkan IP tujuan yang paling sering diserang. Ini dapat mengidentifikasi *server* atau perangkat mana yang menjadi target utama.

Luna System SUMMARY ATTACKED PORT SUMMARY ATTACKER PORT Top values of Dst Port.k 5601 DoS 443 DoS 29 602 57174 DoS 12 5601 147 59626 11 DoS DDoS 49882 DoS DoS 738 DoS 20 772

Gambar 2.12. Tampilan menu Port Distribution

Pada gambar 2.12 tersebut, merupakan tampilan dari menu *port distribution*, pada menu ini terdapat 2 chart dan 2 table. *chart* ini untuk menunjukkan *port* sumber yang paling sering digunakan dalam serangan. Selain itu juga terdapat chart *port destination*, ini akan menunjukkan *port* tujuan yang paling sering diserang. Ini dapat mengidentifikasi *server* atau perangkat mana yang menjadi target utama. Selanutnya terdapat *table* untuk menampilkan kesimpulan dari *port* penyerang dan *port* yang diserang, tabel ini akan mencakup *port*, label serangan dan total serangan yang terjadi.

10.3. Demonstrasi Produk

Sediakan link dan QR code yang merujuk ke video demonstrasi produk.

Contoh:

Link: https://drive.google.com/drive/folders/13rugbQGNDQa_HG53q4kCHoVBwJvy04YO?usp=sharing

10.4. Kesimpulan Realisasi Desain Produk dengan Implementasi Produk

Di dalam sub bab ini, Tim Capstone harus membuat tabel kesimpulan untuk melakukan pelacakan dari list desain yang ada apakah ada proses implementasi yang gagal dari dokumen desain yang ada serta melakukan menjabarkan analisis dari kegagalan yang ada.

Template dan Dokumen C500

`Topik Capstone	Topik Capstone			
Siklus / Tahun	Gasal (Nov) atau Genap (Mei) / 2022		
Judul Dokumen	Capstone TA			
	Judul Capstone Proyek kelomp	ok		
Jenis Dokumen	PENGUJIAN PRODUK			
	Catatan: Penggunaan dan penyebaran dokumen ini dikendalikan oleh			
	Departemen Teknik Komputer Univer	Departemen Teknik Komputer Universitas Diponegoro		
Nomor Dokumen	C500.[NoRev]TA[tahun].[1/2].[KodeKelompok]			
Nomor Revisi	NoRev			
Nama File	KodeKelompok.doc			
Tanggal Penerbitan	Tanggal Penerbitan			
Unit Penerbit	Departemen Teknik Komputer Universitas Diponegoro			
Jumlah Halaman	Jumlah Halaman	Tidak termasuk sampul		

		Data Pengusul		
Pengusul	Nama NIM		Jabatan	Anggota
	Tanggal		Tanda Tangan	
	Nama NIM		Jabatan	Anggota
	Tanggal		Tanda Tangan	
	Nama NIM		Jabatan	Anggota
	Tanggal		Tanda Tangan	
Pembimbing 1 (Utama)	Nama		Tanda Tangan	
	Tanggal	NIP.		
Pembimbing 2	Nama		Tanda Tangan	
	Tanggal	NIP.		

Versi, Tanggal, Oleh	Perbaikan

Daftar Isi

1. Pend	<u>ahuluan</u>	92
	Ringkasan isi dokumen	
<u>1.2.</u>	Aplikasi Dokumen	92
1.3.	<u>Referensi</u>	92
<u>1.4.</u>	<u>Daftar Singkatan</u>	92
2. Peng	<u>ujian</u>	92
2.1.	Pengujian model	92
2.2.	Pengujian Aplikasi	93

11. Pendahuluan

11.1. Ringkasan isi dokumen

Isi Ringkasan Dokumen

11.2. Aplikasi Dokumen

Dokumen ini berlaku berfungsi untuk menjelaskan:

- 10) Tahap pengujian produk yang telah dibuat dalam dokumen C300 dan C400
- 11) Acuan keberhasilan produk sesuai spesifikasi yang telah dijabarkan dalam dokumen C200
- 12) Menjadi catatan pengerjaan dan proses pengujian produk yang dilakukan
- 13) Catatan proses pengerjaan dan revisi yang sedang berlangsung

11.3. Referensi

11.4. Daftar Singkatan

12. Pengujian

12.1. Pengujian model

Jelaskan hasil pengujian tentang bagaimana model yang digunakan diuji, rumus pengujian, dan perhitungan presisinya.

Contoh:

Pengujian dilakukan hanya menggunakan dataset yang telah ada. Pengujian algoritma deteksi menggunakan dataset CIC-IDS-2017, CSE-CIC-IDS2018, dan CICDDoS2019. Dataset ini mencakup trafik normal dan serangan Slow DoS dan DRDoS.

Recall atau sensitivitas (juga disebut True Positive Rate) adalah metrik yang mengukur proporsi serangan yang diidentifikasi dengan benar relatif terhadap serangan yang sebenarnya dalam lalu lintas sampel. Hal ini dicapai melalui penerapan persamaan berikut:

$$Recall = TP/TP + FN$$

Precision atau ketepatan adalah kemampuan sistem dalam memastikan bahwa apa yang diidentifikasi sebagai serangan benar-benar adalah serangan. Precision dihitung dengan menggunakan persamaan berikut:

$$Precision = TN/TN + FP$$

F1 Score adalah ombinasi dari precision dan recall, memberikan gambaran keseluruhan tentang keseimbangan antara keduanya Precision dihitung dengan menggunakan persamaan berikut:

$$F1Score = 2 * Precision + Recall/Precision * Recall$$

Akurasi sistem deteksi didefinisikan sebagai persentase deteksi akurat yang dilakukan pada aliran lalu lintas sampel. Metrik ini dihitung dengan menggunakan persamaan berikut:

$$Accuracy = TP + TN/TP + FN + FP + FN$$

Tabel 2.9 Hasil pengujian sistem deteksi DoS dengan Ensemble Stacking menggunakan Test Set

Dataset	Recall	Precision	F1-Score	Akurasi
CIC-IDS2017	99,98804%	99,98801%	99,988013%	99,988041%

CSE-CIC-IDS2018				
CIC-DDOS2019	99,97972948%	99,97972952%	99,97972948%	99,97972946%

Tabel 2.9 menunjukkan hasil dari pengetesan sistem deteksi DoS berdasarkan Test Set Performa ensemble stacking menunjukkan performa yang baik dengan akurasi sebesar 99,9880413%, presisi sebesar 99,9880193%, F1 score sebesar 99,9880139%, recall sebesar 99,9880413%.

Hasil dari pengetesan sistem deteksi reflection-based DDoS berdasarkan Test Set Performa ensemble stacking menunjukkan performa yang baik dengan akurasi sebesar 99,97972948% presisi sebesar 99,97972952%, F1 score sebesar 99,97972948%, recall sebesar 99,97972946%.

12.2. Pengujian Aplikasi

Jelaskan hasil pengujian aplikasi yang meliputi aspek fungsional, keamanan, waktu respon, dan portabilitas (jika memungkinkan) dengan skenario yang telah direncanakan.

Contoh:

Melakukan pengujian aplikasi setelah melakukan implementasi dalam pengembangan perangkat lunak React Js, Html dan Javascript. Pada tahapan ini memiliki fungsi dan tujuan untuk memastikan bahwa aplikasi yang dikembangkan bisa berjalan sesuai dengan fungsinya dan tidak mengalami kegagalan selama sistem berjalan. Sehingga bisa dipastikan bahwa sistem berjalan sesuai dengan kebutuhan pengguna. Metode pengujian aplikasi yang digunakan adalah Black Box Testing.

2.2.1. Pengujian Fungsional Sistem dengan Black Box Testing

Pengujian dengan metode Black Box testing adalah suatu pendekatan di mana pengujian dilakukan tanpa memerhatikan struktur internal atau logika implementasi dari suatu sistem atau perangkat lunak [3]. Fokus utama dari Black Box testing adalah pada input yang diberikan dan output yang dihasilkan, tanpa memperhatikan cara sistem mencapai hasil tersebut. Tujuannya adalah untuk mengevaluasi fungsionalitas dan respons sistem tanpa memerlukan pengetahuan detail tentang kode sumbernya. Black Box testing efektif dalam mengidentifikasi bug atau kesalahan yang mungkin terjadi pada tingkat fungsionalitas atau antarmuka pengguna.

A. Pengujian Autentikasi

Pada pengujian fitur autentikasi untuk Administrator menjelaskan tentang hasil pengujian pada halaman Sign In, dan Sign Out pada sistem. Penjelasan terkait hasil pengujian ini terdapat pada Tabel 2.1.

Tabel 2.1. Pengujian Fitur Autentikasi

SRS-id	Kode	Nama	Bentuk	Hasil yang	Hasil
	Pengujian	Pengujian	Pengujian	Diharapkan	Pengujian
(dipetakan	A101	Sign in ke	Memasukkan	Sistem	Berhasil
dengan		sistem.	nama pengguna	menampilkan	
SRS-id			dan kata sandi	halaman	
yang ada di			akun	dashboard sistem.	
C-300)			Administrator.		
	A102	Validasi data	Memasukkan	Sistem	Berhasil
		pada form sign	username dan	membatalkan	
		in.	password yang	proses sign in dan	

		tidak terdaftar	memberikan pesan	
		dalam sistem.	peringatan/invalid	
			credentials kepada	
			pengguna.	
A103	Sign out dari	Melakukan	Sistem	Berhasil
	sistem.	<i>logout</i> dari	menampilkan	
		menu account	halaman <i>login</i>	
		yang terdapat		
		halaman		
		dashboard		

Berdasarkan Tabel 2.1 yang memuat pengujian black box pada fitur Autentikasi untuk Administrator didapatkan hasil yang fungsional. Fungsi tersebut sudah berjalan dengan baik sesuai dengan hasil yang diharapkan.

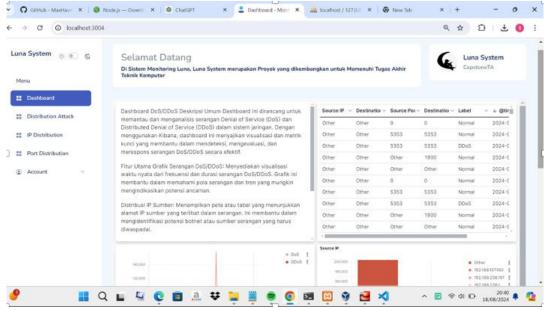
B. Pengujian Fitur

Pada pengujian aplikasi untuk Administrator menjelaskan tentang hasil pengujian setiap halaman pada sistem. Penjelasan terkait hasil pengujian ini terdapat pada Tabel 2.8.

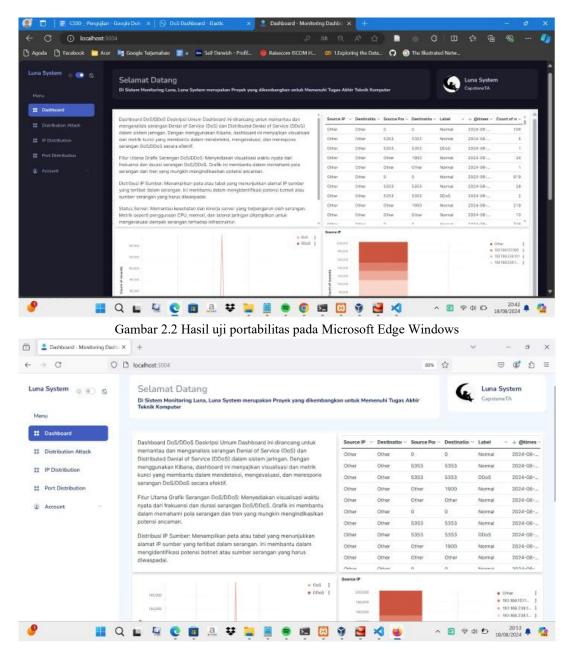
Tabel 2.8 Pengujian aplikasi

SRS-id	Kode	Nama	Bentuk Pengujian	Hasil yang	Hasil
	Pengujian	Pengujian		Diharapkan	Pengujian
(dipetakan	A201	Melihat data grafik	Administrator dapat	Halaman Dashboard	Berhasil
dengan		pada <i>Dashboard</i>	melihat data grafik	menampilkan data	
SRS-id			pada halaman	grafik sesuai yang	
yang ada			Dashboard	diharapkan	
di C-300)					
	A202	Melihat table	Administrator dapat	Halaman Dashboard	Berhasil
		summary pada	melihat tabel	menampilkan tabel	
		Dashboard	summary dari	summary sesuai	
			serangan siber yang	yang diharapkan	
			terdeteksi		
	A203	Melihat grafik	Administrator dapat	Halaman Dashboard	Berhasil
		serangan siber	melihat grafik serangan	menampilkan data	
		dalam satuan	siber dalam satuan	grafik serangan siber	
		waktu pada	waktu	dalam satuan waktu	
		Dashboard		sesuai yang	
				diharapkan	
	A204	Melihat bar chart	Administrator	Halaman Dashboard	Berhasil
		pada <i>Dashboard</i>	dapat melihat bar chart	menampilkan data bar	
			dari IP yang terkena	chart sesuai yang	
			serangan siber	diharapkan	
	A205	Melihat data bar	Administrator dapat	Halaman menu	Berhasil
		chart Top IP	melihat bar chart Top	Distribution Attack	
		Attacker pada menu	IP Attacker	menampilkan data top	
		Distribution Attack		ip attackers sesuai	
				dengan yang diharapkan	

A206	Melihat data bar	Administrator dapat	Halaman menu	Berhasil
	chart Top IP	melihat bar chart <i>Top</i>	Distribution 1 Attack	
	Targets pada	IP Targets	menampilkan data	
	menu Distribution		top ip targets sesuai	
	Attack		dengan yang	
			diharapkan	
A207	Melihat data pie	Administrator dapat	Halaman menu	Berhasil
11207	chart Top 2 Attack	melihat pie chart Top 2	Distribution 1 Attack	
	Detection pada	Attack Detection	menampilkan data	
	menu Distribution		top 2 attack detection	
	Attack		sesuai dengan yang	
			diharapkan	
A208	Melihat tabel	Administrator dapat	Halaman menu	Berhasil
71200	Alerts Summary	melihat tabel Alerts	Distribution 1 Attack	
	pada menu	Summary	menampilkan data	
	Distribution Attack		top 2 attack detection	
			sesuai dengan yang	
			diharapkan	
A209	Melihat data pada	Administrator dapat	Halaman menu	Berhasil
71207	chart bar Source	melihat chart bar	Distribution Attack	
	IP Distribution	Source IP Distribution	menampilkan data	
	menu IP		source ip	
	Distribution		distribution sesuai	
			dengan yang	
			diharapkan	
A210	Melihat data chart	Administrator dapat	Halaman menu	Berhasil
	bar Destination IP	melihat chart bar	destination ip	
	Distribution pada	Destination IP	distribution	
	menu IP	Distribution	menampilkan data	
	Distribution		top ip targets sesuai	
			dengan yang	
			diharapkan	
A211	Melihat data pada	Administrator dapat	Halaman menu	Berhasil
11211	menu <i>Port</i>	melihat bar chart Most	Port Distribution	
	Distribution	Attacker Port	menampilkan data	
			most attacker port.	
			sesuai	
			dengan yang	
			diharapkan	
A212	Melihat data bar	Administrator dapat	Halaman menu	Berhasil
	chart Most	melihat bar chart Most	Port Distribution	
	Attacked Port	Attacked Port	menampilkan data	
	pada menu Port		most attacked port	
	Distribution		sesuai dengan yang	
			diharapkan	
A213	Melihat data tabel	Administrator dapat	Halaman menu <i>Port</i>	Berhasil
11213	Summary Most	melihat tabel Summary	Distribution	
	Attacker Port pada	Most Attacker Port	menampilkan data	
	menu Port		summary most attacker	
	1	1	Statistical y most disacret	


	Distribution		ports Sesuai dengan	
			yang diharapkan	
A214	Melihatdata tabel	Administrator dapat	Halaman menu	Berhasil
AZIT	Summary Most	melihat tabel Summary	Port Distribution	
	Attacked Port pada	Most Attacked Port	menampilkan data	
	menu Port		summary most	
	Distribution		attacked port. Sesuai	
			dengan yang	
			diharapkan	

Berdasarkan Tabel 2.8 yang memuat pengujian *black box* pada fitur Dashboard untuk Administrator didapatkan hasil yang fungsional. Fungsi tersebut sudah berjalan dengan baik sesuai dengan hasil yang diharapkan.


2.2.2. Pengujian Non-Fungsional

A. Pengujian Portability

Pada proyek ini, dilakukan suatu pengujian Portablitias terhadap sistem Sistem Monitoring dan Deteksi Serangan DoS/DRDoS Berbasiskan Ensemble Learning menggunakan ELK Stack. Tujuannya adalah untuk memastikan bahwa aplikasi ini dapat berfungsi dengan baik di berbagai sistem operasi, khususnya Windows dan Ubuntu, serta diakses melalui web browser yang umum digunakan seperti Google Chrome, Mozilla Firefox, dan Microsoft Edge. Pengujian ini akan mengidentifikasi apakah ada kendala teknis atau perbedaan performa yang signifikan yang dapat mempengaruhi pengalaman pengguna saat mengoperasikan aplikasi di platform yang berbeda. Dengan demikian, pengujian ini tidak hanya bertujuan untuk menilai kompatibilitas teknis tetapi juga untuk memastikan bahwa aplikasi mampu memberikan pengalaman yang konsisten dan aman bagi pengguna di berbagai lingkungan.

Gambar 2.1 Hasil uji portabilitas pada Chrome Windows

Gambar 2.3 Hasil uji portabilitas pada Mozilla Firefox Windows


Tabel 2.3 Pengujian Portabilitas pada Windows

Komponen	Windows 10 –	Windows 10 –	Windows 10 –	Windows 11 - Edge
	Chrome	Firefox	Edge	
Tampilan UI	Konsisten	Konsisten	Konsisten	Konsisten
Fungsi Monitoring	Berfungsi	Berfungsi	Berfungsi	Berfungsi
Grafik Visualisasi	Ditampilkan dengan	Ditampilkan dengan	Ditampilkan dengan	Ditampilkan dengan
	benar	benar	benar	benar
CORS	Tidak ada masalah	Tidak ada masalah	Tidak ada masalah	Tidak ada masalah

Selanjutnya dilakukan uji portabilitas pada sistem operasi Ubuntu.

Gambar 2.4 Hasil uji portabilitas pada Mozilla Firefox Ubuntu

Gambar 2.5 Hasil uji portabilitas pada Edge Ubuntu

Tabel 2.4 Pengujian portabilitas pada Ubuntu

Komponen	Ubuntu 24.04 –	Ubuntu 24.04 –	Ubuntu 24.04 –	Ubuntu 24.04 –
	Chrome	Firefox	Edge	Chrome
Tampilan UI	Konsisten	Konsisten	Konsisten	Konsisten
Fungsi Monitoring	Berfungsi	Berfungsi	Berfungsi	Berfungsi
Grafik Visualisasi	Ditampilkan dengan	Ditampilkan dengan	Ditampilkan dengan	Ditampilkan dengan
	benar	benar	benar	benar
CORS	Tidak ada masalah	Tidak ada masalah	Tidak ada masalah	Tidak ada masalah

Pengujian yang dilakukan pada Sistem ini menunjukkan bahwa aplikasi memiliki tingkat portability yang baik ketika diakses melalui sistem operasi Windows dan Ubuntu, serta di berbagai web browser seperti Google Chrome, Mozilla Firefox, dan Microsoft Edge. Secara umum, tidak ada masalah signifikan yang menghambat fungsionalitas inti dari sistem, dan aplikasi berhasil berfungsi sesuai dengan harapan di semua kombinasi sistem operasi dan browser yang diuji.

B. Pengujian Response Time

Pada pengujian ini, fokus utama adalah untuk mengevaluasi kinerja Sistem dalam merespons berbagai interaksi pengguna. Pengujian dilakukan dengan mengukur waktu muat halaman, dan waktu render grafik pada berbagai kombinasi sistem operasi (Windows dan Ubuntu) dan web browser (Google Chrome, Mozilla Firefox, dan Microsoft Edge). Hasil pengujian ini akan memberikan wawasan tentang seberapa efisien aplikasi dalam menyajikan data dan memberikan pengalaman yang optimal kepada pengguna.

Tabel 2.5 Pengujian Response Time

Pengujian	Ubuntu 24.04 –	Ubuntu 24.04 –	Windows 10 -	Windows 10 –	Windows 10 –
	Chrome	Firefox	Chrome	Edge	Firefox
Waktu muat	4 detik	4,5 detik	4 detik	5 detik	4 detik
halaman					
Waktu render	1 detik	900 milidetik	1,3 detik	1 detik	960 milidetik
grafik					
Waktu respon	3 detik	3 detik	3,3 detik	2,5 detik	2,5 detik
Kibana					

Berdasarkan pengujian yang dilakukan, sistem ini menunjukkan kinerja waktu respons yang memuaskan di berbagai platform yang diuji. Secara umum, waktu muat halaman berada dalam kisaran 3 hingga 4 detik, menunjukkan bahwa aplikasi mampu memuat konten dengan cepat di semua kombinasi sistem operasi dan browser.

C. Pengujian Safety

Pengujian ini dirancang untuk mengidentifikasi dan mengatasi potensi kelemahan yang dapat dieksploitasi oleh pihak yang tidak bertanggung jawab. Selain itu, pengujian juga mengevaluasi bagaimana aplikasi menangani konfigurasi kritis seperti penggunaan CORS dan protokol HTTP di lingkungan pengembangan, serta bagaimana kesiapan aplikasi ini ketika dipindahkan ke lingkungan

produksi. Langkah-langkah pengujian ini akan memberikan gambaran yang jelas tentang tingkat keamanan yang telah dicapai oleh aplikasi, serta rekomendasi untuk peningkatan lebih lanjut.

Tabel 2.6 Pengujian safety

Pengujian	Ubuntu 24.04 –	Ubuntu 24.04 –	Windows 10 –	Windows 10 -
	Chrome	Firefox	Chrome	Firefox
CORS	CORS dikonfigurasi	CORS dikonfigurasi	CORS dikonfigurasi	CORS dikonfigurasi
Configuration	dengan benar, akses	dengan benar, akses	dengan benar, akses	dengan benar, akses
	hanya dari domain	hanya dari domain	hanya dari domain	hanya dari domain
	yang sah	yang sah	yang sah	yang sah
Proteksi Data	HTTP digunakan	HTTP digunakan	HTTP digunakan	HTTP digunakan
(HTTP)	pada <i>localhost</i> ,	pada <i>localhost</i> ,	pada <i>localhost</i> ,	pada <i>localhost</i> ,
	risiko rendah di	risiko rendah di	risiko rendah di	risiko rendah di
	pengembangan	pengembangan	pengembangan	pengembangan
Vulnerability	Tidak ada	Tidak ada	Tidak ada	Tidak ada
Scanning	kerentanan serius	kerentanan serius	kerentanan serius	kerentanan serius
Incident Response	Deteksi cepat,	Deteksi cepat,	Deteksi cepat,	Deteksi cepat,
	logging lengkap	logging lengkap	logging lengkap	logging lengkap

Berdasarkan hasil pengujian keamanan, aplikasi ini menunjukkan tingkat kesiapan yang baik dalam menghadapi ancaman keamanan. Meskipun aplikasi saat ini beroperasi di localhost dengan HTTP, pengujian menunjukkan bahwa konfigurasi CORS telah diatur dengan baik, membatasi akses hanya pada domain yang sah. Selain itu, hasil pengujian menunjukkan bahwa tidak ada kerentanan serius yang terdeteksi, dan aplikasi mampu menangani insiden keamanan dengan respons yang cepat dan efisien.

D. Pengujian Security

Pengujian ini bertujuan untuk mengidentifikasi kerentanan potensial, memastikan konfigurasi keamanan yang tepat, dan menguji respons sistem terhadap berbagai serangan dan ancaman. Dengan hasil pengujian ini, kita dapat menilai efektivitas langkah-langkah keamanan yang diimplementasikan dan memberikan rekomendasi untuk perbaikan lebih lanjut.

Tabel 2.7 Pengujian security

Pengujian	Ubuntu 24.04 –	Ubuntu 24.04 –	Windows 10 –	Windows 10 -
	Chrome	Firefox	Chrome	Firefox
Autentikasi dan	Akses dan	Akses dan	Akses dan	Akses dan
Otorisasi	autentikasi	autentikasi	autentikasi	autentikasi
	terkontrol	terkontrol	terkontrol	terkontrol
Konfigurasi	Konfigurasi aman	Konfigurasi aman	Konfigurasi aman	Konfigurasi aman
keamanan				
Vulnerability	Tidak ada	Tidak ada	Tidak ada	Tidak ada
Scanning	kerentanan serius	kerentanan serius	kerentanan serius	kerentanan serius

Berdasarkan hasil pengujian keamanan, Sistem ini menunjukkan tingkat keamanan yang sangat baik di berbagai platform. Aplikasi ini bebas dari kerentanan serius, memiliki mekanisme autentikasi yang kuat, dan melindungi data sensitif dengan enkripsi yang memadai. Pengujian penetrasi mengonfirmasi bahwa aplikasi cukup tangguh terhadap serangan yang disimulasikan, dan konfigurasi keamanan telah diterapkan dengan benar untuk melindungi terhadap potensi ancaman.

Lampiran Dokumen

Form Pendaftaran Proyek Desain Capstone

Nama mahasiswa 1	:
NIM	:
Nama mahasiswa 2	:
NIM	:
Nama mahasiswa 3	:
NIM	:
Mengajukan Proyek Desai	n Capstone dengan judul "(judul proyek capstone yang akan dikerjakan)"
	Semarang, (tanggal)

Dosen Pembimbing Capstone 1

(Nama) (Nama)
NIP. (NIP) NIP. (NIP)

Dosen Pembimbing Capstone 2

Form Nilai Dosen Pembimbing

Proyek Desain Capstone 1

Nama mahasiswa 1 :

NIM :

Nama mahasiswa 2 :

NIM :

Nama mahasiswa 3 :

NIM :

Parameter yang dinilai	Nilai Dosen Pembimbing I*	Nilai Dosen Pembimbing 2*
(CPMK 1 - Bobot 15) Kemampuan mahasiswa dalam		
menerapkan pengetahuan matematis atau ilmu alam		
dalam perancangan dan pengembangan solusi proyek		
ketika menganalisis dan menyelesaikan masalah		
kompleks di dunia nyata (C100).		
(CPMK 2 - Bobot 25) Kemampuan mahasiswa dalam		
melakukan perancangan dan pengembangan		
komponen, sistem, atau proses berdasarkan aspek		
ekonomi, manufakturabilitas, sustainabilitas, atau		
aspek lainnya seperti aspek lingkungan dan legal		
(C100, C200, C300).		
(CPMK 3 - Bobot 25) Kemampuan mahasiswa dalam		
melakukan riset dalam proses perancangan desain		
(C100, C200, C300).		
(CPMK 4 - Bobot 15) Kemampuan mahasiswa dalam		
melakukan identifikasi, perumusan, dan analisis		
permasalahan kompleks. (C100).		
(CPMK 5 - Bobot 20) Kemampuan mahasiswa dalam		
memahami dan mengikuti perkembangan teknologi		
(C100, C200, C300).		

Semarang, (tanggal)

Koordinator Proyek Desain Capstone

(Nama)

NIP. (NIP)

Note:

Form ini dicetak dan digunakan untuk 1 tim capstone

No. Dokumen: C500-02- No. Revisi: 02 Tanggal: 10 Februari 2021 Halaman 104 dari TA1920 1 16037 110

^{*}Berikan nilai antara 0-100 untuk masing-masing parameter yang ada

Form Nilai Dosen Penguji

Proyek Desain Capstone 1

Nama mahasiswa 1 :

NIM :

Nama mahasiswa 2 :

NIM :

Nama mahasiswa 3 :

NIM :

Parameter yang dinilai	Nilai Dosen Penguji I*	Nilai Dosen Penguji 2*
(CPMK 1 - Bobot 15) Kemampuan mahasiswa dalam		
menerapkan pengetahuan matematis atau ilmu alam		
dalam perancangan dan pengembangan solusi proyek		
ketika menganalisis dan menyelesaikan masalah		
kompleks di dunia nyata (C100).		
(CPMK 2 - Bobot 25) Kemampuan mahasiswa dalam		
melakukan perancangan dan pengembangan komponen,		
sistem, atau proses berdasarkan aspek ekonomi,		
manufakturabilitas, sustainabilitas, atau aspek lainnya		
seperti aspek lingkungan dan legal (C100, C200, C300).		
(CPMK 3 - Bobot 25) Kemampuan mahasiswa dalam		
melakukan riset dalam proses perancangan desain (C100,		
C200, C300).		
(CPMK 4 - Bobot 15) Kemampuan mahasiswa dalam		
melakukan identifikasi, perumusan, dan analisis		
permasalahan kompleks. (C100).		
(CPMK 5 - Bobot 20) Kemampuan mahasiswa dalam		
memahami dan mengikuti perkembangan teknologi		
(C100, C200, C300).		

Semarang, (tanggal)

Koordinator Proyek Desain Capstone

(Nama) NIP. (NIP)

Note:

Form ini dicetak dan digunakan untuk 1 tim capstone

No. Dokumen: C500-02- No. Revisi: 02 Tanggal: 10 Februari 2021 Halaman 105 dari TA1920.1.16037 110

^{*}Berikan nilai antara 0-100 untuk masing-masing parameter yang ada

Form Nilai Dosen Pembimbing

Proyek Desain Capstone 2

Nama mahasiswa 1 :

NIM :

Nama mahasiswa 2 :

NIM :

Nama mahasiswa 3 :

NIM :

Parameter yang dinilai	Nilai Dosen Pembimbing I*	Nilai Dosen Pembimbing 2*
(CPMK 1 - Bobot 40) Kemampuan mahasiswa dalam		
melakukan riset untuk mengumpulkan, menganalisis,		
dan menginterpretasi data guna mendukung penilaian		
teknis dan ilmiah dalamproses perancangan desain		
(C400, C500).		
(CPMK 2 - Bobot 40) Kemampuan mahasiswa dalam		
melakukan identifikasi, perumusan, dan analisis		
permasalahan kompleks (C400, C500).		
(CPMK 3 – Bobot 20) Kemampuan mahasiswa		
dalam menerapkan metode dan desain perancangan		
sistem (C400)		

Semarang, (tanggal) Koordinator Proyek Desain Capstone

> (Nama) NIP. (NIP)

Note:

Form ini dicetak dan digunakan untuk 1 tim capstone

^{*}Berikan nilai antara 0-100 untuk masing-masing parameter yang ada

Form Kesesuaian Milestone Proyek Desain Capstone 2

Nama mahasiswa 1 NIM Nama mahasiswa 2 NIM Nama mahasiswa 3 NIM

Parameter yang dinilai	Nilai Dosen Pembimbing I*	Nilai Dosen Pembimbing 2*
(CPMK 5 - Bobot 30) Kemampuan mahasiswa dalam		
melakukan perencanaan dan pengelolaan proyek		
desain capstone sesuai dengan waktu yang sudah		
ditentukan.		
(CPMK 5 - Bobot 30) Kemampuan mahasiswa dalam		
melakukan perencanaan dan pengelolaan proyek		
desain capstone sesuai dengan dana yang diusulkan.		
(CPMK 5 - Bobot 40) Kemampuan mahasiswa dalam		
melakukan perencanaan dan pengelolaan proyek		
desain capstone sesuai dengan kebutuhan identifikasi		
desain.		

Semarang, (tanggal) Koordinator Proyek Desain Capstone

> (Nama) NIP. (NIP)

Note:

Form ini dicetak dan digunakan untuk 1 tim capstone *Berikan nilai antara 0-100 untuk masing-masing parameter yang ada

Form Penilaian Expo Proyek Desain Capstone 2

Nama Penilai

Afiliasi

Parameter yang dinilai (CPMK 4)	Nilai*
Bobot 20) Brosur dan standing banner informatif	
nenarik	
Bobot 20) Video presentasi yang ditampilkan	
formatif dan menarik	
Bobot 20) Presentasi produk jelas	
Bobot 20) Penjelasan yang diberikan jelas	
Bobot 20) Jawaban pertanyaan jelas	
Total Nilai	
	Semarang, (tanggal
	(Nama Pemberi Nilai

Form Peer Review Proyek Desain Capstone 2

Judul Proyek Desain Capstone :
Nama :
NIM :

(CPMK 6) Berilah nilai sesuai dengan kontribusi teman dalam kelompok Proyek Desain Capstone. Tulis angka 1 – 4 sesuai dengan keterangan setiap kriteria.

	Kriteria yang dinilai	Skor				Nama Anggota
No		1	2	3	4	
1	Keterlibatan dalam perancangan komponen	Kurang	Cukup	Baik	Sangat baik	
2	Keterlibatan dalam implementasi komponen	Kurang	Cukup	Baik	Sangat baik	
3	Keterlibatan dalam penyusunan laporan	Kurang	Cukup	Baik	Sangat baik	
4	Keterlibatan dalam pembuatan slide	Kurang	Cukup	Baik	Sangat baik	
5	Komunikasi	Sulit	Cukup	Baik	Sangat baik	
		dihubungi			& konsisten	
6	Kerjasama	Kurang	Cukup	Baik	Sangat baik	
7	Penyelesaian masalah	Tidak efektif	Cukup	Baik	Sangat baik	
8	Penyelesaian tugas	Tidak	Jarang tepat	Sering tepat	Selalu tepat	
		selesai	waktu	waktu	waktu	
9	Tanggung jawab	Tidak	Agak	Bertanggung	Sangat	
		bertanggung	bertanggung	jawab	bertanggung	
		jawab	jawab		jawab	
10	Kontribusi keseluruhan	Sedikit	Cukup	Baik	Sangat baik	

^{*}Penilaian ini rahasia, tulislah sesuai dengan pengamatan anda dalam kelompok.